Denoising Low-Dose CT Images Using Noise2Noise and Evaluation of Hyperparameters

被引:0
|
作者
Man, Or [1 ]
Cohen, Miri Weiss [1 ]
机构
[1] Braude Coll Engn, Karmiel, Israel
关键词
CT scans; Noise2Noise; U-Net; Hyper-parameter; Optimization; NETWORK;
D O I
10.1007/978-3-031-43085-5_34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In computed tomography (CT), the quality of the image is directly related to the exposure of the patient during the scan. A reduction in exposure reduces the health risks for patients, however, an increase in noise compromises the image quality. This work examines the Noise2Noise framework, which requires only noisy image pairs for network training in order to minimize the noise in CT images. This study examines the effects of varying learning rates, batch sizes, epochs, and encoder-decoder network depths on a variety of loss functions and their parameters.
引用
收藏
页码:433 / 447
页数:15
相关论文
共 50 条
  • [41] A Low-Dose CT Image Denoising Method Based on Generative Adversarial Network and Noise Level Estimation
    Zhang Xiong
    Yang Linlin
    Hong, Shangguan
    Han Zefang
    Han Xinglong
    Wang Anhong
    Cui Xueying
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2021, 43 (08) : 2404 - 2413
  • [42] DFSNE-Net: Deviant feature sensitive noise estimate network for low-dose CT denoising?
    Liu, Jiaji
    Jiang, Huiyan
    Ning, Fuzhen
    Li, Min
    Pang, Wenbo
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 149
  • [43] Noise Suppression and Edge Preservation for Low-Dose COVID-19 CT Images Using NLM and Method Noise Thresholding in Shearlet Domain
    Diwakar, Manoj
    Singh, Prabhishek
    Swarup, Chetan
    Bajal, Eshan
    Jindal, Muskan
    Ravi, Vinayakumar
    Singh, Kamred Udham
    Singh, Teekam
    DIAGNOSTICS, 2022, 12 (11)
  • [44] Low-Dose CT Images Denoising Integrating Machine Learning and Optimization
    Xu, Q.
    Lyu, Q.
    Sheng, K.
    MEDICAL PHYSICS, 2021, 48 (06)
  • [45] Detection of urolithiasis using low-dose CT-A noise simulation study
    Niemann, T.
    Van Straten, M.
    Resinger, C.
    Bayer, T.
    Bongartz, Georg
    EUROPEAN JOURNAL OF RADIOLOGY, 2011, 80 (02) : 213 - 218
  • [46] Iterative material decomposition for spectral CT using self-supervised Noise2Noise prior
    Fang, Wei
    Wu, Dufan
    Kim, Kyungsang
    Kalra, Mannudeep K.
    Singh, Ramandeep
    Li, Liang
    Li, Quanzheng
    PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (15):
  • [47] Self-Adaptive Iterative Step Approach to Noise Reduction in Low-Dose CT Images
    Zhang, Wei
    Mao, Baolin
    Chen, Xiaozhao
    Wang, Luyang
    Fan, Shengyu
    Kang, Yan
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2017, 7 (01) : 194 - 196
  • [48] Zero-Shot Noise2Noise: Efficient Image Denoising without any Data
    Mansour, Youssef
    Heckel, Reinhard
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 14018 - 14027
  • [49] Unsupervised Noise Reduction for Nanochannel Measurement Using Noise2Noise Deep Learning
    Takaai, Takayuki
    Tsutsui, Makusu
    TRENDS AND APPLICATIONS IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2021, 2021, 12705 : 44 - 56
  • [50] Low-dose CT image denoising without high-dose reference images
    Yuan, Nimu
    Zhou, Jian
    Qi, Jinyi
    15TH INTERNATIONAL MEETING ON FULLY THREE-DIMENSIONAL IMAGE RECONSTRUCTION IN RADIOLOGY AND NUCLEAR MEDICINE, 2019, 11072