Denoising Low-Dose CT Images Using Noise2Noise and Evaluation of Hyperparameters

被引:0
|
作者
Man, Or [1 ]
Cohen, Miri Weiss [1 ]
机构
[1] Braude Coll Engn, Karmiel, Israel
关键词
CT scans; Noise2Noise; U-Net; Hyper-parameter; Optimization; NETWORK;
D O I
10.1007/978-3-031-43085-5_34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In computed tomography (CT), the quality of the image is directly related to the exposure of the patient during the scan. A reduction in exposure reduces the health risks for patients, however, an increase in noise compromises the image quality. This work examines the Noise2Noise framework, which requires only noisy image pairs for network training in order to minimize the noise in CT images. This study examines the effects of varying learning rates, batch sizes, epochs, and encoder-decoder network depths on a variety of loss functions and their parameters.
引用
收藏
页码:433 / 447
页数:15
相关论文
共 50 条
  • [21] A Self-Supervised Method Using Noise2Noise Strategy for Denoising CRP Gathers
    Wang, Xiaokai
    Fan, Siyuan
    Zhao, Chen
    Liu, Dawei
    Chen, Wenchao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [22] Local noise weighted filtering for emphysema scoring of low-dose CT images
    Schilham, AMR
    van Ginneken, B
    Gietema, H
    Prokop, M
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2006, 25 (04) : 451 - 463
  • [23] A self-validation Noise2Noise training framework for image denoising
    Limsuebchuea, Asavaron
    Duangsoithong, Rakkrit
    Jaruenpunyasak, Jermphiphut
    IMAGING SCIENCE JOURNAL, 2024, 72 (07): : 855 - 870
  • [24] Denoising swin transformer and perceptual peak signal-to-noise ratio for low-dose CT image denoising
    Zhang, Boyan
    Zhang, Yingqi
    Wang, Binjie
    He, Xin
    Zhang, Fan
    Zhang, Xinhong
    MEASUREMENT, 2024, 227
  • [25] Robust Denoising of Low-Dose CT Images using Convolutional Neural Networks
    Nguyen Thanh Trung
    Trinh Dinh Hoan
    Nguyen Linh Trung
    Luu Manh Ha
    PROCEEDINGS OF 2019 6TH NATIONAL FOUNDATION FOR SCIENCE AND TECHNOLOGY DEVELOPMENT (NAFOSTED) CONFERENCE ON INFORMATION AND COMPUTER SCIENCE (NICS), 2019, : 506 - 511
  • [26] Low-dose COVID-19 CT Image Denoising Using CNN and its Method Noise Thresholding
    Diwakar, Manoj
    Pandey, Neeraj Kumar
    Singh, Ravinder
    Sisodia, Dilip
    Arya, Chandrakala
    Singh, Prabhishek
    Chakraborty, Chinmay
    CURRENT MEDICAL IMAGING, 2023, 19 (02) : 182 - 193
  • [27] Low-Dose CT Image Denoising Using a Generative Adversarial Network With a Hybrid Loss Function for Noise Learning
    Ma, Yinjin
    Wei, Biao
    Feng, Peng
    He, Peng
    Guo, Xiaodong
    Wang, Ge
    IEEE ACCESS, 2020, 8 (08): : 67519 - 67529
  • [28] Self-Augmented Noisy Image for Noise2Noise Image Denoising
    Limsuebchuea, Asavaron
    Duangsoithong, Rakkrit
    Phukpattaranont, Pornchai
    IEEE ACCESS, 2024, 12 : 71076 - 71087
  • [29] Cross-Domain Low-Dose CT Image Denoising With Semantic Preservation and Noise Alignment
    Huang, Jiaxin
    Chen, Kecheng
    Ren, Yazhou
    Sun, Jiayu
    Pu, Xiaorong
    Zhu, Ce
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 8771 - 8782
  • [30] A Spatiotemporal Denoising Method for Low-Dose Cardiac CT Images
    Yang, J.
    Zhou, S.
    Huang, J.
    Yu, L.
    Jin, M.
    MEDICAL PHYSICS, 2021, 48 (06)