Denoising Low-Dose CT Images Using Noise2Noise and Evaluation of Hyperparameters

被引:0
|
作者
Man, Or [1 ]
Cohen, Miri Weiss [1 ]
机构
[1] Braude Coll Engn, Karmiel, Israel
关键词
CT scans; Noise2Noise; U-Net; Hyper-parameter; Optimization; NETWORK;
D O I
10.1007/978-3-031-43085-5_34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In computed tomography (CT), the quality of the image is directly related to the exposure of the patient during the scan. A reduction in exposure reduces the health risks for patients, however, an increase in noise compromises the image quality. This work examines the Noise2Noise framework, which requires only noisy image pairs for network training in order to minimize the noise in CT images. This study examines the effects of varying learning rates, batch sizes, epochs, and encoder-decoder network depths on a variety of loss functions and their parameters.
引用
收藏
页码:433 / 447
页数:15
相关论文
共 50 条
  • [1] Hybrid-Collaborative Noise2Noise Denoiser for Low-Dose CT Images
    Hasan, Ahmed M.
    Mohebbian, Mohammad Reza
    Wahid, Khan A.
    Babyn, Paul
    IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2021, 5 (02) : 235 - 244
  • [2] Unsupervised denoising of photoacoustic images based on the Noise2Noise network
    Cheng, Yanda
    Zheng, Wenhan
    Bing, Robert
    Zhang, Huijuan
    Huang, Chuqin
    Huang, Peizhou
    Ying, Leslie
    Xia, Jun
    BIOMEDICAL OPTICS EXPRESS, 2024, 15 (08): : 4390 - 4405
  • [3] Low-dose CT reconstruction with Noise2Noise network and testing-time fine-tuning
    Wu, Dufan
    Kim, Kyungsang
    Li, Quanzheng
    MEDICAL PHYSICS, 2021, 48 (12) : 7657 - 7672
  • [4] Denoising of Home OCT Images Using Noise2Noise Trained on Artificial Eye Data
    Rowedder, Marc
    Kepp, Timo
    Neumann, Tobias
    Sudkamp, Helge
    Huettmann, Gereon
    Handels, Heinz
    MEDICAL IMAGING 2024: IMAGE PROCESSING, 2024, 12926
  • [5] Improved Noise2Noise Denoising with Limited Data
    Calvarons, Adria Font
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, : 796 - 805
  • [6] Noise Reduction in Low-dose CT with Stacked Sparse Denoising Autoencoders
    Ma, Zongqing
    Zhang, Yi
    Zhang, Weihua
    Wang, Yan
    Lin, Feng
    He, Kun
    Li, Xiaohua
    Pu, Yifei
    Zhou, Jiliu
    2016 IEEE NUCLEAR SCIENCE SYMPOSIUM, MEDICAL IMAGING CONFERENCE AND ROOM-TEMPERATURE SEMICONDUCTOR DETECTOR WORKSHOP (NSS/MIC/RTSD), 2016,
  • [7] Local noise estimation in low-dose chest CT images
    Padgett, J.
    Biancardi, A. M.
    Henschke, C. I.
    Yankelevitz, D.
    Reeves, A. P.
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2014, 9 (02) : 221 - 229
  • [8] Local noise estimation in low-dose chest CT images
    J. Padgett
    A. M. Biancardi
    C. I. Henschke
    D. Yankelevitz
    A. P. Reeves
    International Journal of Computer Assisted Radiology and Surgery, 2014, 9 : 221 - 229
  • [9] Training a low-dose CT denoising network with only low-dose CT dataset: Comparison of DDLN and Noise2Void
    Liang, Kaichao
    Zhang, Li
    Xing, Yuxiang
    MEDICAL IMAGING 2021: PHYSICS OF MEDICAL IMAGING, 2021, 11595
  • [10] Innovative Noise Extraction and Denoising in Low-Dose CT Using a Supervised Deep Learning Framework
    Zhang, Wei
    Salmi, Abderrahmane
    Yang, Chifu
    Jiang, Feng
    ELECTRONICS, 2024, 13 (16)