NUMERICAL RANGE FOR WEIGHTED MOORE-PENROSE INVERSE OF TENSOR

被引:0
作者
Be, Aaisha [1 ]
Shekhar, Vaibhav [2 ,3 ]
Mishra, Debasisha [1 ]
机构
[1] Natl Inst Technol, Dept Math, Raipur 492010, India
[2] Indian Inst Technol Delhi, Dept Math, New Delhi 110016, India
[3] Govt Engn Coll, Dept Appl Sci & Humanities, Sheikhpura 811105, Bihar, India
关键词
Tensor; Einstein product; Numerical range; Numerical radius; Weighted Moore-Penrose inverse; MATRICES; RADIUS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article first introduces the notion of weighted singular value decomposition (WSVD) of a tensor via the Einstein product. The WSVD is then used to compute the weighted Moore-Penrose inverse of an arbitrary-order tensor. We then define the notions of weighted normal tensor for an even-order square tensor and weighted tensor norm. Finally, we apply these to study the theory of numerical range for the weighted Moore-Penrose inverse of an even-order square tensor and exploit its several properties. We also obtain a few new results in matrix setting.
引用
收藏
页码:140 / 171
页数:32
相关论文
共 57 条
[51]   Outer and (b,c) inverses of tensors [J].
Stanimirovic, Predrag S. ;
Ciric, Miroslav ;
Katsikis, Vasilios N. ;
Li, Chaoqian ;
Ma, Haifeng .
LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (05) :940-971
[52]   ON THE EARLY HISTORY OF THE SINGULAR-VALUE DECOMPOSITION [J].
STEWART, GW .
SIAM REVIEW, 1993, 35 (04) :551-566
[53]  
STURMFELS B., 2016, Notices Amer. Math. Soc., V63, P604, DOI DOI 10.1090/NOTI1389
[54]   Moore-Penrose inverse of tensors via Einstein product [J].
Sun, Lizhu ;
Zheng, Baodong ;
Bu, Changjiang ;
Wei, Yimin .
LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (04) :686-698
[55]   GENERALIZING SINGULAR VALUE DECOMPOSITION [J].
VANLOAN, CF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (01) :76-83
[56]   Some topics on weighted Moore-Penrose inverse, weighted least squares and weighted regularized Tikhonov problems [J].
Wang, DK .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 157 (01) :243-267
[57]   Generalized eigenvalue for even order tensors via Einstein product and its applications in multilinear control systems [J].
Wang, Yuchao ;
Wei, Yimin .
COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (08)