NUMERICAL RANGE FOR WEIGHTED MOORE-PENROSE INVERSE OF TENSOR

被引:0
作者
Be, Aaisha [1 ]
Shekhar, Vaibhav [2 ,3 ]
Mishra, Debasisha [1 ]
机构
[1] Natl Inst Technol, Dept Math, Raipur 492010, India
[2] Indian Inst Technol Delhi, Dept Math, New Delhi 110016, India
[3] Govt Engn Coll, Dept Appl Sci & Humanities, Sheikhpura 811105, Bihar, India
关键词
Tensor; Einstein product; Numerical range; Numerical radius; Weighted Moore-Penrose inverse; MATRICES; RADIUS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article first introduces the notion of weighted singular value decomposition (WSVD) of a tensor via the Einstein product. The WSVD is then used to compute the weighted Moore-Penrose inverse of an arbitrary-order tensor. We then define the notions of weighted normal tensor for an even-order square tensor and weighted tensor norm. Finally, we apply these to study the theory of numerical range for the weighted Moore-Penrose inverse of an even-order square tensor and exploit its several properties. We also obtain a few new results in matrix setting.
引用
收藏
页码:140 / 171
页数:32
相关论文
共 57 条
[1]  
[Anonymous], 1965, Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical Analysis
[2]  
[Anonymous], 2009, INTRO CONTINUUM MECH, DOI DOI 10.1016/B978-0-7506-8560-3.X0001-1
[3]  
AXELSSON O., 1994, Linear Multilinear Algebra, V37, P225
[4]   Weighted Moore-Penrose inverses of arbitrary-order tensors [J].
Behera, Ratikanta ;
Maji, Sandip ;
Mohapatra, R. N. .
COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (04)
[5]  
Ben-Israel A., 2003, Generalized Inverses: Theory and Applications, V2
[6]  
Bonsall F. F., 1971, Numerical ranges of operators on normed spaces and of elements of normed algebras
[7]  
BONSALL FF, 1973, NUMERICAL RANGES, V2
[8]   SOLVING MULTILINEAR SYSTEMS VIA TENSOR INVERSION [J].
Brazell, M. ;
Li, N. ;
Navasca, C. ;
Tamon, C. .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (02) :542-570
[9]  
Cheng SH, 1999, LINEAR ALGEBRA APPL, V303, P63
[10]   Numerical Range of Moore-Penrose Inverse Matrices [J].
Chien, Mao-Ting .
MATHEMATICS, 2020, 8 (05)