(R, S)-(Skew) Symmetric Solutions to Matrix Equation AXB = C over Quaternions

被引:1
作者
Liao, Ruopeng [1 ]
Liu, Xin [2 ]
Long, Sujuan [3 ]
Zhang, Yang [4 ]
机构
[1] Macau Univ Sci & Technol, Fac Innovat Engn, Sch Comp Sci & Engn, Ave Wai Long, TaiPa 999078, Macau, Peoples R China
[2] Macau Univ Sci & Technol, Macau Inst Syst Engn, Fac Innovat Engn, Ave Wai Long, TaiPa 999078, Macau, Peoples R China
[3] Minjiang Univ, Sch Math & Data Sci, Fuzhou 350108, Fujian, Peoples R China
[4] Univ Manitoba, Dept Math, Winnipeg, MB R3T 2N2, Canada
关键词
quaternion matrix equation; (R; S)-(skew); symmetric; real representation; REFLEXIVE SOLUTIONS; INVERSE PROBLEMS;
D O I
10.3390/math12020323
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
(R,S)-(skew) symmetric matrices have numerous applications in civil engineering, information theory, numerical analysis, etc. In this paper, we deal with the (R,S)-(skew) symmetric solutions to the quaternion matrix equation AXB=C. We use a real representation A(tau) to obtain the necessary and sufficient conditions for AXB=C to have (R,S)-(skew) symmetric solutions and derive the solutions when it is consistent. We also derive the least-squares (R,S)-(skew) symmetric solution to the above matrix equation.
引用
收藏
页数:12
相关论文
共 22 条
  • [1] Ben-Israel A., 1974, GEN INVERSES THEORY, Vsecond
  • [2] Generalized reflexive matrices: Special properties and applications
    Chen, HC
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 19 (01) : 140 - 153
  • [3] A new structure-preserving quaternion QR decomposition method for color image blind watermarking
    Chen, Yong
    Jia, Zhi-Gang
    Peng, Yan
    Peng, Ya-Xin
    Zhang, Dan
    [J]. SIGNAL PROCESSING, 2021, 185 (185)
  • [4] Matrix equations over (R, S)-symmetric and (R, S)-skew symmetric matrices
    Dehghan, Mehdi
    Hajarian, Masoud
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (11) : 3583 - 3594
  • [5] Gaudet CJ, 2018, IEEE IJCNN
  • [6] A real quaternion matrix equation with applications
    He, Zhuo-Heng
    Wang, Qing-Wen
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (06) : 725 - 740
  • [7] Algebraic methods for diagonalization of a quaternion matrix in quaternionic quantum theory
    Jiang, TS
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (05)
  • [8] CONSISTENCY OF QUATERNION MATRIX EQUATIONS AX* - XB = C AND X - AX*B = C*
    Liu, Xin
    Wang, Qing-Wen
    Zhang, Yang
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2019, 35 : 394 - 407
  • [9] The iterative algorithm for solving a class of generalized coupled Sylvester-transpose equations over centrosymmetric or anti-centrosymmetric matrix
    Lv, Chang-Qing
    Ma, Chang-Feng
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (08) : 1576 - 1594
  • [10] A Quaternion Gradient Operator and Its Applications
    Mandic, D. P.
    Jahanchahi, C.
    Took, C. Cheong
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2011, 18 (01) : 47 - 50