Functional alterations and predictive capacity of gut microbiome in type 2 diabetes

被引:17
作者
Dash, Nihar Ranjan [1 ]
Al Bataineh, Mohammad T. [2 ,3 ]
Alili, Rohia [4 ,5 ]
Al Safar, Habiba [3 ]
Alkhayyal, Noura [6 ]
Prifti, Edi [4 ,7 ]
Zucker, Jean-Daniel [4 ,7 ]
Belda, Eugeni [4 ,7 ]
Clement, Karine [4 ,5 ]
机构
[1] Univ Sharjah, Coll Med, Dept Clin Sci, Sharjah, U Arab Emirates
[2] Khalifa Univ Sci & Technol, Coll Med & Hlth Sci, Dept Genet & Mol Biol, POB 127788, Abu Dhabi, U Arab Emirates
[3] Khalifa Univ Sci & Technol, Ctr Biotechnol, Abu Dhabi, U Arab Emirates
[4] Sorbonne Univ, INSERM, Nutr & Obesities Syst Approaches NutriOm, Paris, France
[5] Hop La Pitie Salpetriere, Assistance Publ Hop Paris, Nutr Dept, Paris, France
[6] Univ Hosp Sharjah, Sharjah, U Arab Emirates
[7] Sorbonne Univ, IRD, Unit Modelisat Math & Informat Syst Complexes, JEAI WARM,UMMISCO, F-93143 Bondy, France
关键词
METAGENOME; SIGNATURES; HEALTH;
D O I
10.1038/s41598-023-49679-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The gut microbiome plays a significant role in the development of Type 2 Diabetes Mellitus (T2DM), but the functional mechanisms behind this association merit deeper investigation. Here, we used the nanopore sequencing technology for metagenomic analyses to compare the gut microbiome of individuals with T2DM from the United Arab Emirates (n = 40) with that of control (n = 44). DMM enterotyping of the cohort resulted concordantly with previous results, in three dominant groups Bacteroides (K1), Firmicutes (K2), and Prevotella (K3) lineages. The diversity analysis revealed a high level of diversity in the Firmicutes group (K2) both in terms of species richness and evenness (Wilcoxon rank-sum test, p value < 0.05 vs. K1 and K3 groups), consistent with the Ruminococcus enterotype described in Western populations. Additionally, functional enrichment analyses of KEGG modules showed significant differences in abundance between individuals with T2DM and controls (FDR < 0.05). These differences include modules associated with the degradation of amino acids, such as arginine, the degradation of urea as well as those associated with homoacetogenesis. Prediction analysis with the Predomics approach suggested potential biomarkers for T2DM, including a balance between a depletion of Enterococcus faecium and Blautia lineages with an enrichment of Absiella spp or Eubacterium limosum in T2DM individuals, highlighting the potential of metagenomic analysis in predicting predisposition to diabetic cardiomyopathy in T2DM patients.
引用
收藏
页数:12
相关论文
共 50 条
[31]   Exploring the Profile of the Gut Microbiome in Differentiating Type 2 Diabetes Mellitus and Non Alcoholic Fatty Liver Disease [J].
Anand, Yashasvi ;
Joshi, Shiv .
JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH, 2023, 17 (04) :DE11-DE14
[32]   Impact of omega-3 fatty acids on hypertriglyceridemia, lipidomics, and gut microbiome in patients with type 2 diabetes [J].
Lu, Jieli ;
Liu, Ruixin ;
Ren, Huahui ;
Wang, Shuangyuan ;
Hu, Chunyan ;
Shi, Zhun ;
Li, Mian ;
Liu, Wei ;
Wan, Qin ;
Su, Qing ;
Li, Qifu ;
Zheng, Hongting ;
Qu, Shen ;
Yang, Fangming ;
Ji, Hongyi ;
Lin, Hong ;
Qi, Hongyan ;
Wu, Xueyan ;
Wu, Kui ;
Chen, Yuhong ;
Xu, Yu ;
Xu, Min ;
Wang, Tiange ;
Zheng, Jie ;
Ning, Guang ;
Zheng, Ruizhi ;
Bi, Yufang ;
Zhong, Huanzi ;
Wang, Weiqing .
MED, 2025, 6 (01)
[33]   The Depletion of Carbohydrate Metabolic Genes in the Gut Microbiome Contributes to the Transition From Central Obesity to Type 2 Diabetes [J].
Jia, Ruikai ;
Huang, Min ;
Qian, Lichun ;
Yan, Xiaoye ;
Lv, Qing ;
Ye, Hua ;
Ye, Li ;
Wu, Xin ;
Chen, Weizhi ;
Chen, Ye ;
Jia, Yankai ;
Huang, Yueqing ;
Wu, Huihui .
FRONTIERS IN ENDOCRINOLOGY, 2021, 12
[34]   Type 1 diabetes in pregnancy is associated with distinct changes in the composition and function of the gut microbiome [J].
Roth-Schulze, Alexandra J. ;
Penno, Megan A. S. ;
Ngui, Katrina M. ;
Oakey, Helena ;
Bandala-Sanchez, Esther ;
Smith, Alannah D. ;
Allnutt, Theo R. ;
Thomson, Rebecca L. ;
Vuillermin, Peter J. ;
Craig, Maria E. ;
Rawlinson, William D. ;
Davis, Elizabeth A. ;
Harris, Mark ;
Soldatos, Georgia ;
Colman, Peter G. ;
Wentworth, John M. ;
Haynes, Aveni ;
Barry, Simon C. ;
Sinnott, Richard O. ;
Morahan, Grant ;
Bediaga, Naiara G. ;
Smyth, Gordon K. ;
Papenfuss, Anthony T. ;
Couper, Jennifer J. ;
Harrison, Leonard C. .
MICROBIOME, 2021, 9 (01)
[35]   Association of oral microbiome with type 2 diabetes risk [J].
Long, J. ;
Cai, Q. ;
Steinwandel, M. ;
Hargreaves, M. K. ;
Bordenstein, S. R. ;
Blot, W. J. ;
Zheng, W. ;
Shu, X. O. .
JOURNAL OF PERIODONTAL RESEARCH, 2017, 52 (03) :636-643
[36]   Gut Microbiome in Obesity, Metabolic Syndrome, and Diabetes [J].
Chen, Xinpu ;
Devaraj, Sridevi .
CURRENT DIABETES REPORTS, 2018, 18 (12)
[37]   Intake of sucrose affects gut dysbiosis in patients with type 2 diabetes [J].
Hashimoto, Yoshitaka ;
Hamaguchi, Masahide ;
Kaji, Ayumi ;
Sakai, Ryosuke ;
Osaka, Takafumi ;
Inoue, Ryo ;
Kashiwagi, Saori ;
Mizushima, Katsura ;
Uchiyama, Kazuhiko ;
Takagi, Tomohisa ;
Naito, Yuji ;
Fukui, Michiaki .
JOURNAL OF DIABETES INVESTIGATION, 2020, 11 (06) :1623-1634
[38]   Lipidomic signatures linked to gut microbiota alterations in children and adolescents with type 2 diabetes mellitus and metabolic syndrome [J].
Mora-Godinez, Shirley ;
de la Garza, Ana Laura ;
Tamez-Rivera, Oscar ;
Senes-Guerrero, Carolina ;
Carrizales-Sanchez, Ana Karen ;
Garcia-Rivas, Gerardo ;
Hernandez-Brenes, Carmen .
SCIENTIFIC REPORTS, 2025, 15 (01)
[39]   The significance of the gut microbiome in children with functional constipation [J].
Kwiatkowska, Monika ;
Krogulska, Aneta .
ADVANCES IN CLINICAL AND EXPERIMENTAL MEDICINE, 2021, 30 (04) :471-480
[40]   A neural network-based framework to understand the type 2 diabetes-related alteration of the human gut microbiome [J].
Guo, Shun ;
Zhang, Haoran ;
Chu, Yunmeng ;
Jiang, Qingshan ;
Ma, Yingfei .
IMETA, 2022, 1 (02)