Implementation and comparison of machine learning techniques applied to predict the development of aphid populations

被引:0
作者
Lazzaretti, Alexandre Tagliari [1 ]
Schneider, Vinicius Rafael [1 ]
Wiest, Roberto [1 ]
Lau, Douglas [2 ]
Fernandes, Jose Mauricio C. [2 ]
Fraisse, Clyde W. [3 ]
Cerbaro, Vinicius Andrei [3 ]
Karrei, Mauricio Z. [3 ]
机构
[1] Inst Fed Sul Riograndense, Passo Fundo, RS, Brazil
[2] Embrapa Trigo, Passo Fundo, RS, Brazil
[3] Univ Florida, Gainesville, FL USA
来源
REVISTA BRASILEIRA DE COMPUTACAO APLICADA | 2023年 / 15卷 / 03期
关键词
Artificial neural networks; Decision tree; Exploratory Data; Knowledge extraction; Linear Regression; Random Forest;
D O I
10.5335/rbca.v15i3.13467
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Insects have an important degree of collaboration for the maintenance of the ecosystem on the planet. However, after reaching a certain population level and causing damage to plants, some insects are considered as pests and represent a threat to agriculture. Aphids insects that has characteristics to reach this state as it has a high biotic potential and can cause different types of damage to plants. Climatic data as precipitation, winds and temperatures affect the population quantity of these insects. Therefore, this work proposes to apply different machine learning techniques with the objective to verify the existing correlation between climatic variables and the population dynamics of aphids. It can be concluded that variables such as precipitation, temperature, number of days when it rains in the week and climatic phenomena such as El nino and La nina have an influence on the aphid population. During the work, four models were developed in order to predict the population of these insects. The accuracy of the prediction model developed were 11.4% for Linear Regression; 26.4% for the Artificial Neural Network model; 29.3% for Decision Tree and 41.4% for Random Forest.
引用
收藏
页码:25 / 37
页数:13
相关论文
共 30 条
[1]  
AUAD ALEXANDER M., 2002, Neotrop. entomol., V31, P335, DOI 10.1590/S1519-566X2002000200025
[2]  
CABI, 2022, Rhopalosiphum padi (grain aphid), DOI [10.1079/cabicompendium.47321, DOI 10.1079/CABICOMPENDIUM.47321]
[3]  
Cunha G. R., 2001, El nino-oscilacao do sul e seus impactos sobre a cultura de cevada no brasil, V09, P137
[4]   Data Science and Prediction [J].
Dhar, Vasant .
COMMUNICATIONS OF THE ACM, 2013, 56 (12) :64-73
[5]  
Dias M, 2002, Acta Scientiarum: Technology, V24, DOI [10.4025/actascitechnol.v24i0.2549, DOI 10.4025/ACTASCITECHNOL.V24I0.2549]
[6]  
do Nascimento R. L. S., 2018, Revista Novas Tecnologias na Educacao, V16, DOI [10.22456/1679-1916.85989, DOI 10.22456/1679-1916.85989]
[7]   Oscillation, synchrony, and multi-factor patterns between cereal aphids and parasitoid populations in southern Brazil [J].
Engel, Eduardo ;
Lau, Douglas ;
Godoy, Wesley A. C. ;
Pasini, Mauricio P. B. ;
Malaquias, Jose B. ;
Santos, Carlos D. R. ;
Pivato, Juliana ;
Pereira, Paulo R. V. da S. .
BULLETIN OF ENTOMOLOGICAL RESEARCH, 2022, 112 (02) :143-150
[8]  
Fernandes G. A. G., 2013, Sistema automatizado de aquisicao de dados meteorologicos
[9]  
Finkler C. L. L., 2013, Anais da Academia Pernambucana de Ciencia Agronomica, V8, P169
[10]  
Gassen DN., 1984, INSETOS ASS CULTURA