Homological Transfer between Additive Categories and Higher Differential Additive Categories

被引:0
作者
Tang, Xi [1 ]
Huang, Zhao Yong [2 ]
机构
[1] Guilin Univ Aerosp Technol, Sch Sci, Guilin 541004, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
关键词
Higher differential objects; Wakamatsu tilting subcategories; G(omega)-projective modules; support tau-tilting modules; tau(m)-selfinjective algebras; precluster tilting subcategories; ALGEBRAS; EQUIVALENCE;
D O I
10.1007/s10114-023-2193-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given an additive category C and an integer n >= 2. The higher differential additive category consists of objects X in C equipped with an endomorphism epsilon(X) satisfying epsilon(n)(X) = 0. Let R be a finite-dimensional basic algebra over an algebraically closed field and T the augmenting functor from the category of finitely generated left R-modules to that of finitely generated left R/(t(n))-modules. It is proved that a finitely generated left R-module M is tau-rigid (respectively, (support) tau-tilting, almost complete tau-tilting) if and only if so is T(M) as a left R[t]/(t(n))-module. Moreover, R is tau(m)-selfinjective if and only if so is R[t]/(t(n)).
引用
收藏
页码:1325 / 1344
页数:20
相关论文
共 32 条
[1]   τ-tilting theory [J].
Adachi, Takahide ;
Iyama, Osamu ;
Reiten, Idun .
COMPOSITIO MATHEMATICA, 2014, 150 (03) :415-452
[2]   Silting mutation in triangulated categories [J].
Aihara, Takuma ;
Iyama, Osamu .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2012, 85 :633-668
[3]   Tilting preenvelopes and cotilting precovers [J].
Angeleri Hugel, L ;
Tonolo, A ;
Trlifaj, J .
ALGEBRAS AND REPRESENTATION THEORY, 2001, 4 (02) :155-170
[4]   Homological invariants associated to semi-dualizing bimodules [J].
Araya, T ;
Takahashi, R ;
Yoshino, Y .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2005, 45 (02) :287-306
[5]   Class and rank of differential modules [J].
Avramov, Luchezar L. ;
Buchweitz, Ragnar-Olaf ;
Iyengar, Srikanth .
INVENTIONES MATHEMATICAE, 2007, 169 (01) :1-35
[6]   A characterization of n-cotilting and n-tilting modules [J].
Bazzoni, S .
JOURNAL OF ALGEBRA, 2004, 273 (01) :359-372
[7]   Cohen-Macaulay modules, (co)torsion pairs and virtually Gorenstein algebras [J].
Beligiannis, A .
JOURNAL OF ALGEBRA, 2005, 288 (01) :137-211
[8]  
Beligiannis A., 2007, HOMOLOGICAL HOMOTOPI
[9]   Exact categories [J].
Buehler, Theo .
EXPOSITIONES MATHEMATICAE, 2010, 28 (01) :1-69
[10]  
CARTAN H, 1956, HOMOLOGICAL ALGEBRA