Global LP-Boundedness of Rough Fourier Integral Operators

被引:0
作者
Sindayigaya, Joachim [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
基金
中国国家自然科学基金;
关键词
Fourier integral operators; Lp-boundedness; rough amplitude; rough phase function; PSEUDODIFFERENTIAL-OPERATORS;
D O I
10.1007/s00009-023-02448-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish the L-p-boundedness of Fourier integral operators T-f,T-a with rough amplitude and phase function, which satisfies the new class of rough non-degeneracy condition. In this study, under the conditions a ? (LS?m)-S-8, f ? (LF2)-F-8 and when 1-(d)/(2) ? = 1, we show that T-f,T-a is bounded from L(p )to itself for p E [1, oo] with some measure conditions on m. Our main results extend and improve some known results about L-p-boundedness of Fourier integral operators.
引用
收藏
页数:15
相关论文
共 22 条
[1]  
[Anonymous], 1993, HARMONIC ANAL REAL V
[2]  
CALDERON AP, 1971, J MATH SOC JPN, V23, P374
[3]   On the global boundedness of Fourier integral operators [J].
Cordero, Elena ;
Nicola, Fabio ;
Rodino, Luigi .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2010, 38 (04) :373-398
[4]   On the boundedness of Fourier integral operators on Lp(Rn) [J].
Coriasco, Sandro ;
Ruzhansky, Michael .
COMPTES RENDUS MATHEMATIQUE, 2010, 348 (15-16) :847-851
[5]  
Duistermaat JJ, 2011, MOD BIRKHAUSER CLASS, P1, DOI 10.1007/978-0-8176-8108-1
[6]   FOURIER INTEGRAL OPERATORS. II [J].
Duistermaat, J. J. ;
Hormander, L. .
ACTA MATHEMATICA, 1972, 128 (01) :183-269
[7]  
Eskin GI., 1970, Mat Sb (NS), V82, P585
[8]  
Ferreira D. Dos Santos, 2014, MEM AM MATH SOC, V229
[9]  
Fujiwara D., 1977, J. Fac. Sci., Univ. Tokyo, Sect. 1A, Math., V24, P327
[10]   Weighted LP estimates for rough bi-parameter Fourier integral operators [J].
Hong, Qing ;
Lu, Guozhen .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (03) :1097-1127