Ship Detection and Recognition Based on Improved YOLOv7

被引:20
作者
Wu, Wei [1 ]
Li, Xiulai [2 ]
Hu, Zhuhua [1 ]
Liu, Xiaozhang [3 ]
机构
[1] Hainan Univ, Sch Informat & Commun Engn, Haikou 570228, Peoples R China
[2] Hainan Univ, Sch Cyberspace Secur, Haikou 570228, Peoples R China
[3] Hainan Univ, Sch Comp Sci & Technol, Haikou 570228, Peoples R China
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2023年 / 76卷 / 01期
关键词
Ship position prediction; target detection; YOLOv7; data augmentation techniques;
D O I
10.32604/cmc.2023.039929
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, an advanced YOLOv7 model is proposed to tackle the challenges associated with ship detection and recognition tasks, such as the irregular shapes and varying sizes of ships. The improved model replaces the fixed anchor boxes utilized in conventional YOLOv7 models with a set of more suitable anchor boxes specifically designed based on the size distribution of ships in the dataset. This paper also introduces a novel multiscale feature fusion module, which comprises Path Aggregation Network (PAN) modules, enabling the efficient capture of ship features across different scales. Furthermore, data preprocessing is enhanced through the application of data augmentation techniques, including random rotation, scaling, and cropping, which serve to bolster data diversity and robustness. The distribution of positive and negative samples in the dataset is balanced using random sampling, ensuring a more accurate representation of real-world scenarios. Comprehensive experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art approaches in terms of both detection accuracy and robustness, highlighting the potential of the improved YOLOv7 model for practical applications in the maritime domain.
引用
收藏
页码:489 / 498
页数:10
相关论文
共 50 条
  • [21] Ship target detection method for synthetic aperture radar images based on improved YOLOv5
    He Z.
    Li M.
    Gou Y.
    Yang A.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2023, 45 (12): : 3743 - 3753
  • [22] Infrared Image Detection and Recognition of Substation Electrical Equipment Based on Improved YOLOv8
    Tao, Haotian
    Paul, Agyemang
    Wu, Zhefu
    APPLIED SCIENCES-BASEL, 2025, 15 (01):
  • [23] Small-Sample Underwater Target Detection: A Joint Approach Utilizing Diffusion and YOLOv7 Model
    Cheng, Chensheng
    Hou, Xujia
    Wen, Xin
    Liu, Weidong
    Zhang, Feihu
    REMOTE SENSING, 2023, 15 (19)
  • [24] Lightweight Oracle Bone Character Detection Algorithm Based on Improved YOLOv7-tiny
    Li, Ying
    Chen, He
    Zhang, Weike
    Sun, Wenqiang
    2024 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, ICMA 2024, 2024, : 485 - 490
  • [25] EGRN-YOLO: An Enhanced Multi-View Remote Sensing Detection Algorithm for Onshore Wind Turbines Based on YOLOv7
    Xue, Renzheng
    Xu, Haiqiang
    Wu, Qianlong
    IEEE ACCESS, 2025, 13 : 42457 - 42471
  • [26] An efficient detection method for litchi fruits in a natural environment based on improved YOLOv7-Litchi
    Li, Can
    Lin, Jiaquan
    Li, Zhao
    Mai, Chaodong
    Jiang, Runpeng
    Li, Jun
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 217
  • [27] TOFD Image Features Recognition Based on Improved YOLOv8
    Ren, Xukai
    Du, Xiyong
    Yu, Huanwei
    Chang, Zhiyu
    Wang, Guobiao
    2024 IEEE 19TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, ICIEA 2024, 2024,
  • [28] Helmet detection method based on improved YOLOv5
    Hou G.
    Chen Q.
    Yang Z.
    Zhang Y.
    Zhang D.
    Li H.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2024, 46 (02): : 329 - 342
  • [29] Hand target detection based on improved YOLOv5
    Xu Z.
    Meng J.
    Fang J.
    International Journal of Wireless and Mobile Computing, 2023, 25 (04) : 353 - 361
  • [30] Text Detection Algorithm based on Improved YOLOv3
    Wang, Huibai
    Zhang, Zhenda
    PROCEEDINGS OF 2019 IEEE 9TH INTERNATIONAL CONFERENCE ON ELECTRONICS INFORMATION AND EMERGENCY COMMUNICATION (ICEIEC 2019), 2019, : 147 - 150