Novel phenylalanine-modified magnetic ferroferric oxide nanoparticles for ciprofloxacin removal from aqueous solution

被引:29
作者
Fu, Xuan [1 ,2 ]
Sarker, Shovra [1 ,2 ]
Ma, Weijia [1 ,2 ]
Zhao, Weijie [1 ,2 ]
Rong, Yan [1 ,2 ]
Liu, Qi [1 ,2 ]
机构
[1] Yangzhou Univ, Inst Translat Med, Med Coll, Yangzhou 225009, Peoples R China
[2] Yangzhou Univ, Jiangsu Key Lab Integrated Tradit Chinese & Wester, Yangzhou 225009, Peoples R China
关键词
Magnetic nanoparticles; Surface functionalization; Amino acid; Ciprofloxacin; Adsorption; ORDERED MESOPOROUS CARBON; ADSORPTION; ADSORBENT; TETRACYCLINE; ANTIBIOTICS; DESIGN; AMOXICILLIN; PERFORMANCE; MECHANISMS; OXIDATION;
D O I
10.1016/j.jcis.2022.11.067
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The pollution of natural water bodies by pharmaceutical compounds has led to serious concerns regard-ing ecological and public health safety. In this study, novel recyclable phenylalanine (Phe)-modified mag-netic ferroferric oxide nanoparticles (Fe3O4@Phe NPs) were successfully synthesized for the first time using a simple one-pot method to remove ciprofloxacin (CIP) from aqueous solutions. Fe3O4 and Fe3O4@Phe NPs were characterized using different techniques, such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), Turbiscan analysis and vibrating-sample magnetometry (VSM). The results show that Fe3O4 NPs are fully encapsulated by Phe, exhibiting an average diameter of 200 nm, a high specific surface area (35.79 m2 g-1), good dispersion and superparamagnetic properties. The effects of Phe content, initial pH and ionic strength on CIP adsorption onto Fe3O4 and Fe3O4@Phe NPs are investigated. The maximal adsorption capacity of CIP onto Fe3O4@Phe NPs is determined to be 49.27 mg g-1. The adsorption kinetics and isotherms show that the adsorption process follows the pseudo-second-order-kinetic and Langmuir isotherm models, respectively. This indicates that the adsorption involves a rate-controlled monolayer chemisorption process. The regeneration experiments show that Fe3O4 and Fe3O4@Phe NPs exhibit good reusability for CIP adsorption. Adsorption mechanisms include electrostatic interactions, hydrogen bonding, hydrophobicity and 7C -7C interactions. This study presents a promising strategy for the design and preparation of multifunctional nanoparticles to remove contaminants from the environment. & COPY; 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:345 / 356
页数:12
相关论文
共 50 条
  • [1] Removal of ciprofloxacin from aqueous solution by a magnetic chitosan grafted graphene oxide composite
    Wang, Fei
    Yang, Baoshan
    Wang, Hui
    Song, Qixuan
    Tan, Fengjiao
    Cao, Yanan
    JOURNAL OF MOLECULAR LIQUIDS, 2016, 222 : 188 - 194
  • [2] Bentonite for ciprofloxacin removal from aqueous solution
    Genc, Nevim
    Dogan, Esra Can
    Yurtsever, Meral
    WATER SCIENCE AND TECHNOLOGY, 2013, 68 (04) : 848 - 855
  • [3] Guava Leaves as Adsorbent for the Removal of Emerging Pollutant: Ciprofloxacin from Aqueous Solution
    Tay, Chin-Inn
    Ong, Siew-Teng
    JOURNAL OF PHYSICAL SCIENCE, 2019, 30 (02) : 137 - 156
  • [4] Adsorption behavior of tetracycline from aqueous solution on ferroferric oxide nanoparticles assisted powdered activated carbon
    Zhou, Jiahui
    Ma, Fang
    Guo, Haijuan
    CHEMICAL ENGINEERING JOURNAL, 2020, 384
  • [5] Removal of tetracycline and ciprofloxacin from aqueous solutions using magnetic copper ferrite nanoparticles
    Yang, Minge
    He, Jiapan
    He, Junyi
    Cao, Junji
    JOURNAL OF SCIENCE-ADVANCED MATERIALS AND DEVICES, 2024, 9 (02):
  • [6] Adsorptive removal of ciprofloxacin by sodium alginate/graphene oxide composite beads from aqueous solution
    Fei, Yu
    Yong, Li
    Sheng, Han
    Jie, Ma
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2016, 484 : 196 - 204
  • [7] Removal of lead ions from aqueous solutions using novel-modified magnetic nanoparticles: optimization, isotherm, and kinetics studies
    Jafarinejad, S.
    Faraji, M.
    Jafari, P.
    Mokhtari-Aliabad, J.
    DESALINATION AND WATER TREATMENT, 2017, 92 : 267 - 274
  • [8] Synthesis and application of ZnO-MgO-NiO@Stearicamide mixed oxide for removal of ciprofloxacin and ampicillin from aqueous solution
    Olalekan, Olamide A.
    Campbell, Abisola J.
    Adewuyi, Adewale
    Lau, Woei Jye
    Adeyemi, Olalere G.
    RESULTS IN CHEMISTRY, 2022, 4
  • [9] Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide
    Chen, Hao
    Gao, Bin
    Li, Hui
    JOURNAL OF HAZARDOUS MATERIALS, 2015, 282 : 201 - 207
  • [10] Efficient removal of cationic dyes from aqueous solution by polymer-modified magnetic nanoparticles
    Ge, Fei
    Ye, Hui
    Li, Meng-Meng
    Zhao, Bao-Xiang
    CHEMICAL ENGINEERING JOURNAL, 2012, 198 : 11 - 17