Optical Diffractive Convolutional Neural Networks Implemented in an All-Optical Way

被引:4
|
作者
Yu, Yaze [1 ,2 ,3 ]
Cao, Yang [2 ,3 ]
Wang, Gong [2 ,3 ]
Pang, Yajun [2 ,3 ]
Lang, Liying [2 ,3 ]
机构
[1] Hebei Univ Technol, Sch Artificial Intelligence, Tianjin 300401, Peoples R China
[2] Hebei Univ Technol, Ctr Adv Laser Technol, Tianjin 300401, Peoples R China
[3] Hebei Key Lab Adv Laser Technol & Equipment, Tianjin 300401, Peoples R China
基金
中国国家自然科学基金;
关键词
diffraction effect; 4f system; convolutional neural network; image classification;
D O I
10.3390/s23125749
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Optical neural networks can effectively address hardware constraints and parallel computing efficiency issues inherent in electronic neural networks. However, the inability to implement convolutional neural networks at the all-optical level remains a hurdle. In this work, we propose an optical diffractive convolutional neural network (ODCNN) that is capable of performing image processing tasks in computer vision at the speed of light. We explore the application of the 4f system and the diffractive deep neural network (D2NN) in neural networks. ODCNN is then simulated by combining the 4f system as an optical convolutional layer and the diffractive networks. We also examine the potential impact of nonlinear optical materials on this network. Numerical simulation results show that the addition of convolutional layers and nonlinear functions improves the classification accuracy of the network. We believe that the proposed ODCNN model can be the basic architecture for building optical convolutional networks.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] All-optical perception based on partially coherent optical neural networks
    Chen, Rui
    Ma, Yijun
    Zhang, Chuang
    Xu, Wenjun
    Wang, Zhong
    Sun, Shengli
    OPTICS EXPRESS, 2025, 33 (02): : 1609 - 1624
  • [22] All-Optical WDM Recurrent Neural Networks With Gating
    Mourgias-Alexandris, George
    Dabos, George
    Passalis, Nikolaos
    Totovic, Angelina
    Tefas, Anastasios
    Pleros, Nikos
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2020, 26 (05)
  • [23] All-Optical Assay to Study Biological Neural Networks
    Saber, Wardiya Afshar
    Gasparoli, Federico M.
    Dirks, Marjet G.
    Gunn-Moore, Frank J.
    Antkowiak, Maciej
    FRONTIERS IN NEUROSCIENCE, 2018, 12
  • [24] All-optical buffering using laser neural networks
    Liu, Y
    Hill, MT
    de Waardt, H
    Khoe, GD
    Dorren, HJS
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2003, 15 (04) : 596 - 598
  • [25] All-optical atom surface traps implemented with one-dimensional planar diffractive microstructures
    Alloschery, O.
    Mathevet, R.
    Weiner, J.
    Lezec, H. J.
    OPTICS EXPRESS, 2006, 14 (26): : 12568 - 12575
  • [26] Computer-Free, All-Optical Reconstruction of Holograms Using Diffractive Networks
    Rahman, Md Sadman Sakib
    Ozcan, Aydogan
    ACS PHOTONICS, 2021, 8 (11) : 3375 - 3384
  • [27] All-Optical Framing Imaging Technology Based on Diffractive Optical Elements
    Li Yanjin
    Zhou Lang
    Li Zhuo
    Shi Rui
    Wang Xin
    Yang Suhui
    ACTA OPTICA SINICA, 2021, 41 (02)
  • [28] All-optical networks need optical switches
    Hecht, J
    LASER FOCUS WORLD, 2000, 36 (05): : 189 - +
  • [29] Optical monitoring for transparent and all-optical networks
    Giles, R
    APOC 2003: ASIA-PACIFIC OPTICAL AND WIRELESS COMMUNICATIONS; NETWORK ARCHITECTURES, MANAGEMENT, AND APPLICATIONS, PTS 1 AND 2, 2003, 5282 : 275 - 281
  • [30] Switching to all-optical networks
    Kostal, H.
    Lightwave, 2001, 18 (13): : 106 - 110