A Kruskal-Katona-type theorem for graphs: q-Kneser graphs

被引:3
|
作者
Wang, Jun [1 ]
Xu, Ao [1 ]
Zhang, Huajun [2 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[2] Shaoxing Univ, Dept Math, Shaoxing 312000, Peoples R China
基金
中国国家自然科学基金;
关键词
Erdos-Ko-Rado theorem; Intersecting family; Kruskal-Katona theorem; Linear space over a q-element field; q-Kneser graph; INTERSECTION-THEOREMS; SYSTEMS;
D O I
10.1016/j.jcta.2023.105766
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The "Kruskal-Katona-type problem for a graph G" concerned here is to describe subsets of vertices of G that have minimum number of neighborhoods with respect to their sizes. In this paper, we establish a Kruskal-Katona-type theorem for the q-Kneser graphs, whose vertex set consists of all k-dimensional subspaces of an n-dimensional linear space over a q-element field, two subspaces are adjacent if they have the trivial intersection. It includes as a special case the Erdos-Ko-Rado theorem for intersecting families in finite vector spaces and yields a short proof of the Hilton-Milner theorem for nontrivial intersecting families in finite vector spaces. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:19
相关论文
共 9 条
  • [1] The energy of q-Kneser graphs and attenuated q-Kneser graphs
    Lv, Benjian
    Wang, Kaishun
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (13-14) : 2079 - 2083
  • [2] The eigenvalues of q-Kneser graphs
    Lv, Benjian
    Wang, Kaishun
    DISCRETE MATHEMATICS, 2012, 312 (06) : 1144 - 1147
  • [3] Treewidth of the q-Kneser graphs
    Cao, Mengyu
    Liu, Ke
    Lu, Mei
    Lv, Zequn
    DISCRETE APPLIED MATHEMATICS, 2024, 342 : 174 - 180
  • [4] On the P3-hull numbers of q-Kneser graphs and Grassmann graphs
    Liao, Jiaqi
    Cao, Mengyu
    Lu, Mei
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 437
  • [5] Kruskal-Katona-type problems via the entropy method
    Chao, Ting-Wei
    Yu, Hung-Hsun Hans
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2024, 169 : 480 - 506
  • [6] Bipartite q-Kneser graphs and two-generated irreducible linear groups
    Glasby, S. P.
    Niemeyer, Alice C.
    Praeger, Cheryl E.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2025, 710 : 203 - 229
  • [7] A Kruskal-Katona type theorem for integer partitions
    Ku, Cheng Yeaw
    Wong, Kok Bin
    DISCRETE MATHEMATICS, 2013, 313 (20) : 2239 - 2246
  • [8] Erdos-Ko-Rado theorem, Grassmann graphs and ps-Kneser graphs for vector spaces over a residue class ring
    Huang, Li-Ping
    Lv, Benjian
    Wang, Kaishun
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2019, 164 : 125 - 158
  • [9] Erdős-Ko-Rado theorem in Peisert-type graphs
    Yip, Chi Hoi
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2024, 67 (01): : 176 - 187