Erdos-Ko-Rado theorem;
Intersecting family;
Kruskal-Katona theorem;
Linear space over a q-element field;
q-Kneser graph;
INTERSECTION-THEOREMS;
SYSTEMS;
D O I:
10.1016/j.jcta.2023.105766
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
The "Kruskal-Katona-type problem for a graph G" concerned here is to describe subsets of vertices of G that have minimum number of neighborhoods with respect to their sizes. In this paper, we establish a Kruskal-Katona-type theorem for the q-Kneser graphs, whose vertex set consists of all k-dimensional subspaces of an n-dimensional linear space over a q-element field, two subspaces are adjacent if they have the trivial intersection. It includes as a special case the Erdos-Ko-Rado theorem for intersecting families in finite vector spaces and yields a short proof of the Hilton-Milner theorem for nontrivial intersecting families in finite vector spaces. (c) 2023 Elsevier Inc. All rights reserved.
机构:
Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R ChinaTsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
Liao, Jiaqi
Cao, Mengyu
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
Renmin Univ China, Sch Math, Beijing 100872, Peoples R ChinaTsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
Cao, Mengyu
Lu, Mei
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R ChinaTsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
机构:
Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410004, Hunan, Peoples R ChinaChangsha Univ Sci & Technol, Sch Math & Stat, Changsha 410004, Hunan, Peoples R China
Huang, Li-Ping
Lv, Benjian
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
Beijing Normal Univ, Lab Math Comp Syst, Beijing 100875, Peoples R ChinaChangsha Univ Sci & Technol, Sch Math & Stat, Changsha 410004, Hunan, Peoples R China
Lv, Benjian
Wang, Kaishun
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
Beijing Normal Univ, Lab Math Comp Syst, Beijing 100875, Peoples R ChinaChangsha Univ Sci & Technol, Sch Math & Stat, Changsha 410004, Hunan, Peoples R China
机构:
Univ British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, CanadaUniv British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
Yip, Chi Hoi
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES,
2024,
67
(01):
: 176
-
187