Multi-source information fusion meta-learning network with convolutional block attention module for bearing fault diagnosis under limited dataset

被引:14
|
作者
Song, Shanshan [1 ]
Zhang, Shuqing [1 ,2 ]
Dong, Wei [1 ]
Li, Gaochen [1 ]
Pan, Chengyu [1 ]
机构
[1] Yanshan Univ, Sch Elect Engn, Qinhuangdao, Hebei, Peoples R China
[2] Yanshan Univ, Sch Elect Engn, 438 West Sect,Hebei St, Qinhuangdao 066004, Hebei, Peoples R China
来源
STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL | 2024年 / 23卷 / 02期
关键词
Multi-source information fusion; meta-learning; bearing fault diagnosis; limited dataset;
D O I
10.1177/14759217231176045
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Applications in industrial production have indicated that the challenges of sparse fault samples and singular monitoring data will diminish the performance of deep learning-based diagnostic models to varying degrees. To alleviate the above issues, a multi-source information fusion meta-learning network with convolutional block attention module (CBAM) is proposed in this study for bearing fault diagnosis under limited dataset. This method can fully extract and exploit the complementary and enriched fault-related features in the multi-source monitoring data through the designed multi-branch fusion structure and incorporate metric-based meta-learning to enhance the fault diagnosis performance of the model under limited data samples. Furthermore, the introduction of CBAM can further assist the model to trade-off and focus on more discriminative information in both spatial and channel dimensions. Extensive experiments conducted on two bearing datasets that cover multi-source monitoring data fully demonstrate the validity and superiority of the proposed method.
引用
收藏
页码:818 / 835
页数:18
相关论文
共 50 条
  • [21] A Multi-source Information Fusion Fault Diagnosis Method for Vectoring Nozzle Control System Based on Bayesian Network
    Zhang, Youyou
    Shi, Jian
    Wang, Shaoping
    Zhang, Yang
    2020 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON ADVANCED RELIABILITY AND MAINTENANCE MODELING (APARM), 2020,
  • [22] Semi-Supervised Temporal Meta-Learning Framework for Wind Turbine Bearing Fault Diagnosis Under Limited Annotation Data
    Su, Hao
    Yao, Qingtao
    Xiang, Ling
    Hu, Aijun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 9
  • [23] Early warning of reciprocating compressor valve fault based on deep learning network and multi-source information fusion
    Wang, Hongyi
    Chen, Jiwei
    Zhu, Xinjun
    Song, Limei
    Dong, Feng
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2023, 45 (04) : 777 - 789
  • [24] The intelligent fault identification method based on multi-source information fusion and deep learning
    Guo, Dashu
    Yang, Xiaoshuang
    Peng, Peng
    Zhu, Lei
    He, Handong
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [25] Information Fusion-based Meta-Learning for Few-Shot Fault Diagnosis under Different Working Conditions
    Xie, Tingli
    Huang, Xufeng
    Choi, Seung-Kyum
    PROCEEDINGS OF ASME 2022 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2022, VOL 2, 2022,
  • [26] Bearing Fault Diagnosis Based on Shallow Multi-Scale Convolutional Neural Network with Attention
    Huang, Tengda
    Fu, Sheng
    Feng, Haonan
    Kuang, Jiafeng
    ENERGIES, 2019, 12 (20)
  • [27] Bearing Fault Diagnosis Using Convolutional Neural Network Based on a Multi-Attention Mechanism
    Kang T.
    Duan R.
    Yang L.
    Xue J.
    Liao Y.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2022, 56 (12): : 68 - 77
  • [28] A Bearing Fault Diagnosis Method Based on Spectrum Map Information Fusion and Convolutional Neural Network
    Wang, Baiyang
    Feng, Guifang
    Huo, Dongyue
    Kang, Yuyun
    PROCESSES, 2022, 10 (07)
  • [29] A novel meta-learning network with adversarial domain-adaptation and attention mechanism for cross-domain for train bearing fault diagnosis
    Zhong, Hao
    He, Deqiang
    Wei, Zexian
    Jin, Zhenzhen
    Lao, Zhenpeng
    Xiang, Zaiyu
    Shan, Sheng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (12)
  • [30] Research on the Fault Diagnosis Method for Hoisting Machinery Based on Multi-source Information Fusion and BPNN
    Xie, Yi
    Zhang, Jiangwen
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS, 2016, 127