IMPULSE TRAJECTORY AND FINAL CONTROLLABILITY OF PARABOLIC-HYPERBOLIC SYSTEMS

被引:0
|
作者
Semenov, V. V. [1 ]
Denisov, S. V. [1 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Kiev, Ukraine
关键词
controllability; equations of parabolic-hyperbolic type; a priori estimates; negative norms; generalized solution; impulse control; GENERALIZED SOLVABILITY;
D O I
10.1007/s10559-023-00576-0
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The authors analyze the existence and uniqueness of the generalized solutions to boundary-value problems for equations of parabolic-hyperbolic type with generalized functions of finite order in their right-hand sides. The motivation is the analysis of the problems of trajectory and final controllability of systems described by these boundary-value problems and subjected to concentrated influences of impulse or point type. The systems can be considered "toy models" of the interaction of a solid body and a liquid. A priori inequalities in negative norms are obtained. The theorems of the existence and uniqueness of the generalized solutions and theorems of the trajectory and final controllability of systems with singular influences are proved.
引用
收藏
页码:417 / 427
页数:11
相关论文
共 50 条
  • [41] Sensitivity Analysis of Parabolic-Hyperbolic Optimal Control Problems
    Emirsajlow, Zbigniew
    Krakowiak, Anna
    Kowalewski, Adam
    Sokolowski, Jan
    2011 16TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS, 2011, : 34 - 38
  • [42] An Enhanced Parareal Algorithm for Partitioned Parabolic-Hyperbolic Coupling
    Chouly, Franz
    Fernandez, Miguel A.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 1517 - 1520
  • [43] A parabolic-hyperbolic system modeling the tumor growth with angiogenesis
    Shen, Haishuang
    Wei, Xuemei
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 64
  • [44] Reconstruction of Boundary Conditions of a Parabolic-Hyperbolic Transmission Problem
    Koleva, Miglena N.
    Vulkov, Lubin G.
    NEW TRENDS IN THE APPLICATIONS OF DIFFERENTIAL EQUATIONS IN SCIENCES, NTADES 2023, 2024, 449 : 433 - 443
  • [45] On spectral problem of theory of heat parabolic-hyperbolic equation
    Kapustin, N.Yu.
    Moiseev, E.I.
    Elektrokhimiya, 322 (06): : 451 - 455
  • [46] On a quasilinear parabolic-hyperbolic system arising in MEMS modeling
    Walker, Christoph
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (06) : 2769 - 2783
  • [47] ANALYZING AN APPROXIMATE SOLUTION TO A QUASILINEAR PARABOLIC-HYPERBOLIC PROBLEM
    Marchenko, O. O.
    Samoilenko, T. A.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2012, 48 (05) : 762 - 773
  • [48] ON OPTIMAL-CONTROL PROBLEM FOR PARABOLIC-HYPERBOLIC SYSTEM
    KOWALEWSKI, A
    PROBLEMS OF CONTROL AND INFORMATION THEORY-PROBLEMY UPRAVLENIYA I TEORII INFORMATSII, 1986, 15 (05): : 385 - 397
  • [49] On spectral problem of theory of heat parabolic-hyperbolic equation
    Kapustin, NY
    Moiseev, EI
    DOKLADY AKADEMII NAUK, 1997, 352 (04) : 451 - 454
  • [50] Inverse problem for a parabolic-hyperbolic equation in a rectangular domain
    K. B. Sabitov
    E. M. Safin
    Doklady Mathematics, 2009, 80 : 856 - 859