Aquatic biomass is a major source to particulate organic matter export in large Arctic rivers

被引:12
作者
Behnke, Megan I. [1 ,2 ]
Tank, Suzanne E. [3 ]
McClelland, James W. [4 ]
Holmes, Robert M. [5 ]
Haghipour, Negar [6 ,7 ]
Eglinton, Timothy I. [6 ]
Raymond, Peter A. [8 ]
Suslova, Anya [5 ]
Zhulidov, Alexander, V [9 ]
Gurtovaya, Tatiana [9 ]
Zimov, Nikita [10 ]
Zimov, Sergey [10 ]
Mutter, Edda A. [11 ]
Amos, Edwin [12 ]
Spencer, Robert G. M. [2 ]
Rinaldo, Andrea [2 ]
机构
[1] Univ Alaska Southeast, Alaska Coastal Rainforest Ctr, Juneau, AK 99801 USA
[2] Florida State Univ, Natl High Magnet Field Lab Geochem Grp, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL 32306 USA
[3] Univ Alberta, Biol Sci, Edmonton, AB T6G 2R3, Canada
[4] Univ Texas, Marine Sci Inst, Port Aransas, TX 78373 USA
[5] Woodwell Climate Res Ctr, Falmouth, MA 02540 USA
[6] Swiss Fed Inst Technol, Dept Earth Sci, Geol Inst, CH-8092 Zurich, Switzerland
[7] Swiss Fed Inst Technol, Lab Beam Phys, CH-8093 Zurich, Switzerland
[8] Yale Univ, Sch Forestry & Environm Studies, New Haven, CT 06520 USA
[9] South Russia Centre Preparat & Implementat Int Pr, Rostov Na Donu 344090, Russia
[10] Russian Acad Sci, Pacific Geog Inst, Far East Branch, Cherskii 678830, Russia
[11] Yukon River Intertribal Watershed Council, Anchorage, AK 99501 USA
[12] Western Arctic Res Ctr, Inuvik, NT X0E 0T0, Canada
基金
美国国家科学基金会;
关键词
Arctic; rivers; particulate organic; endmember; carbon flux; LAKE FOOD WEBS; GROWTH EFFICIENCY; PERMAFROST THAW; STABLE CARBON; BEAUFORT SEA; SEDIMENT; STREAM; TRANSPORT; BURIAL; INPUTS;
D O I
10.1073/pnas.2209883120
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Arctic rivers provide an integrated signature of the changing landscape and transmit signals of change to the ocean. Here, we use a decade of particulate organic matter (POM) compositional data to deconvolute multiple allochthonous and autochthonous pan-Arctic and watershed-specific sources. Constraints from carbon-to-nitrogen ratios (C:N), delta C-13, and Delta C-14 signatures reveal a large, hitherto overlooked contribution from aquatic biomass. Separation in Delta C-14 age is enhanced by splitting soil sources into shallow and deep pools (mean +/- SD: -228 +/- 211 vs. - 492 +/- 173%) rather than traditional active layer and permafrost pools (-300 +/- 236 vs. -441 +/- 215%) that do not represent permafrost-free Arctic regions. We estimate that 39 to 60% (5 to 95% credible interval) of the annual pan-Arctic POM flux (averaging 4,391 Gg/y particulate organic carbon from 2012 to 2019) comes from aquatic biomass. The remainder is sourced from yedoma, deep soils, shallow soils, petrogenic inputs, and fresh terrestrial production. Climate change-induced warming and increasing CO2 concentrations may enhance both soil destabilization and Arctic river aquatic biomass production, increasing fluxes of POM to the ocean. Younger, autochthonous, and older soil-derived POM likely have different destinies (preferential microbial uptake and processing vs. significant sediment burial, respectively). A small (similar to 7%) increase in aquatic biomass POM flux with warming would be equivalent to a similar to 30% increase in deep soil POM flux. There is a clear need to better quantify how the balance of endmember fluxes may shift with different ramifications for different endmembers and how this will impact the Arctic system.
引用
收藏
页数:9
相关论文
共 74 条
  • [51] ON-LINE RADIOCARBON MEASUREMENTS OF SMALL SAMPLES USING ELEMENTAL ANALYZER AND MICADAS GAS ION SOURCE
    Ruff, M.
    Fahrni, S.
    Gaeggeler, H. W.
    Hajdas, I.
    Suter, M.
    Synal, H-A
    Szidat, S.
    Wacker, L.
    [J]. RADIOCARBON, 2010, 52 (04) : 1645 - 1656
  • [52] Runkel R. L., 2004, 4A5 COL WAT SCI CTR
  • [53] Increase of atmospheric CO2 promotes phytoplankton productivity
    Schippers, P
    Lürling, M
    Scheffer, M
    [J]. ECOLOGY LETTERS, 2004, 7 (06) : 446 - 451
  • [54] Schirrmeister L., 2003, Polar Geography, V27, P277, DOI DOI 10.1080/789610225
  • [55] Carbon dynamics in boreal peatlands of the Yenisey region, western Siberia
    Schulze, E. D.
    Lapshina, E.
    Filippov, I.
    Kuhlmann, I.
    Mollicone, D.
    [J]. BIOGEOSCIENCES, 2015, 12 (23) : 7057 - 7070
  • [56] Vegetal Undercurrents-Obscured Riverine Dynamics of Plant Debris
    Schwab, Melissa S.
    Hilton, Robert G.
    Haghipour, Negar
    Baronas, J. Jotautas
    Eglinton, Timothy, I
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2022, 127 (03)
  • [57] Detrital neodymium and (radio)carbon as complementary sedimentary bedfellows? The Western Arctic Ocean as a testbed
    Schwab, Melissa S.
    Rickli, Jorg D.
    Macdonald, Robie W.
    Harvey, H. Rodger
    Haghipour, Negar
    Eglinton, Timothy, I
    [J]. GEOCHIMICA ET COSMOCHIMICA ACTA, 2021, 315 : 101 - 126
  • [58] Carbon transport by the Lena River from its headwaters to the Arctic Ocean, with emphasis on fluvial input of terrestrial particulate organic carbon vs. carbon transport by coastal erosion
    Semiletov, I. P.
    Pipko, I. I.
    Shakhova, N. E.
    Dudarev, O. V.
    Pugach, S. P.
    Charkin, A. N.
    McRoy, C. P.
    Kosmach, D.
    Gustafsson, O.
    [J]. BIOGEOSCIENCES, 2011, 8 (09) : 2407 - 2426
  • [59] Processes and impacts of Arctic amplification: A research synthesis
    Serreze, Mark C.
    Barry, Roger G.
    [J]. GLOBAL AND PLANETARY CHANGE, 2011, 77 (1-2) : 85 - 96
  • [60] Shakil S., 2021, BIOGEOSCI DISCUSS, DOI 10.5194/bg-2021-150