Aquatic biomass is a major source to particulate organic matter export in large Arctic rivers

被引:12
作者
Behnke, Megan I. [1 ,2 ]
Tank, Suzanne E. [3 ]
McClelland, James W. [4 ]
Holmes, Robert M. [5 ]
Haghipour, Negar [6 ,7 ]
Eglinton, Timothy I. [6 ]
Raymond, Peter A. [8 ]
Suslova, Anya [5 ]
Zhulidov, Alexander, V [9 ]
Gurtovaya, Tatiana [9 ]
Zimov, Nikita [10 ]
Zimov, Sergey [10 ]
Mutter, Edda A. [11 ]
Amos, Edwin [12 ]
Spencer, Robert G. M. [2 ]
Rinaldo, Andrea [2 ]
机构
[1] Univ Alaska Southeast, Alaska Coastal Rainforest Ctr, Juneau, AK 99801 USA
[2] Florida State Univ, Natl High Magnet Field Lab Geochem Grp, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL 32306 USA
[3] Univ Alberta, Biol Sci, Edmonton, AB T6G 2R3, Canada
[4] Univ Texas, Marine Sci Inst, Port Aransas, TX 78373 USA
[5] Woodwell Climate Res Ctr, Falmouth, MA 02540 USA
[6] Swiss Fed Inst Technol, Dept Earth Sci, Geol Inst, CH-8092 Zurich, Switzerland
[7] Swiss Fed Inst Technol, Lab Beam Phys, CH-8093 Zurich, Switzerland
[8] Yale Univ, Sch Forestry & Environm Studies, New Haven, CT 06520 USA
[9] South Russia Centre Preparat & Implementat Int Pr, Rostov Na Donu 344090, Russia
[10] Russian Acad Sci, Pacific Geog Inst, Far East Branch, Cherskii 678830, Russia
[11] Yukon River Intertribal Watershed Council, Anchorage, AK 99501 USA
[12] Western Arctic Res Ctr, Inuvik, NT X0E 0T0, Canada
基金
美国国家科学基金会;
关键词
Arctic; rivers; particulate organic; endmember; carbon flux; LAKE FOOD WEBS; GROWTH EFFICIENCY; PERMAFROST THAW; STABLE CARBON; BEAUFORT SEA; SEDIMENT; STREAM; TRANSPORT; BURIAL; INPUTS;
D O I
10.1073/pnas.2209883120
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Arctic rivers provide an integrated signature of the changing landscape and transmit signals of change to the ocean. Here, we use a decade of particulate organic matter (POM) compositional data to deconvolute multiple allochthonous and autochthonous pan-Arctic and watershed-specific sources. Constraints from carbon-to-nitrogen ratios (C:N), delta C-13, and Delta C-14 signatures reveal a large, hitherto overlooked contribution from aquatic biomass. Separation in Delta C-14 age is enhanced by splitting soil sources into shallow and deep pools (mean +/- SD: -228 +/- 211 vs. - 492 +/- 173%) rather than traditional active layer and permafrost pools (-300 +/- 236 vs. -441 +/- 215%) that do not represent permafrost-free Arctic regions. We estimate that 39 to 60% (5 to 95% credible interval) of the annual pan-Arctic POM flux (averaging 4,391 Gg/y particulate organic carbon from 2012 to 2019) comes from aquatic biomass. The remainder is sourced from yedoma, deep soils, shallow soils, petrogenic inputs, and fresh terrestrial production. Climate change-induced warming and increasing CO2 concentrations may enhance both soil destabilization and Arctic river aquatic biomass production, increasing fluxes of POM to the ocean. Younger, autochthonous, and older soil-derived POM likely have different destinies (preferential microbial uptake and processing vs. significant sediment burial, respectively). A small (similar to 7%) increase in aquatic biomass POM flux with warming would be equivalent to a similar to 30% increase in deep soil POM flux. There is a clear need to better quantify how the balance of endmember fluxes may shift with different ramifications for different endmembers and how this will impact the Arctic system.
引用
收藏
页数:9
相关论文
共 74 条
  • [11] Permafrost thaw and intense thermokarst activity decreases abundance of stream benthic macroinvertebrates
    Chin, Krista S.
    Lento, Jennifer
    Culp, Joseph M.
    Lacelle, Denis
    Kokelj, Steven V.
    [J]. GLOBAL CHANGE BIOLOGY, 2016, 22 (08) : 2715 - 2728
  • [12] Stable carbon and nitrogen isotope composition of aquatic and terrestrial plants of the San Francisco Bay estuarine system
    Cloern, JE
    Canuel, EA
    Harris, D
    [J]. LIMNOLOGY AND OCEANOGRAPHY, 2002, 47 (03) : 713 - 729
  • [13] Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism
    Cole, JJ
    Caraco, NF
    [J]. MARINE AND FRESHWATER RESEARCH, 2001, 52 (01) : 101 - 110
  • [14] de Mendiburu F., 2020, Statistical procedures for agricultural research, V1
  • [15] Bacterial growth efficiency in natural aquatic systems
    del Giorgio, PA
    Cole, JJ
    [J]. ANNUAL REVIEW OF ECOLOGY AND SYSTEMATICS, 1998, 29 : 503 - 541
  • [16] Constraints on the origin of sedimentary organic carbon in the Beaufort Sea from coupled molecular 13C and 14C measurements
    Drenzek, Nicholas J.
    Montlucon, Daniel B.
    Yunker, Mark B.
    Macdonald, Robie W.
    Eglinton, Timothy I.
    [J]. MARINE CHEMISTRY, 2007, 103 (1-2) : 146 - 162
  • [17] Assessing the Potential for Mobilization of Old Soil Carbon After Permafrost Thaw: A Synthesis of 14C Measurements From the Northern Permafrost Region
    Estop-Aragones, Cristian
    Olefeldt, David
    Abbott, Benjamin W.
    Chanton, Jeffrey P.
    Czimczik, Claudia I.
    Dean, Joshua F.
    Egan, Jocelyn E.
    Gandois, Laure
    Garnett, Mark H.
    Hartley, Iain P.
    Hoyt, Alison
    Lupascu, Massimo
    Natali, Susan M.
    O'Donnell, Jonathan A.
    Raymond, Peter A.
    Tanentzap, Andrew J.
    Tank, Suzanne E.
    Schuur, Edward A. G.
    Turetsky, Merritt
    Anthony, Katey Walter
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 2020, 34 (09)
  • [18] Effects of Climate Change on Peatland Reservoirs: A DOC Perspective
    Fenner, N.
    Meadham, J.
    Jones, T.
    Hayes, F.
    Freeman, C.
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 2021, 35 (07)
  • [19] The importance of terrestrial organic carbon inputs on Kara Sea shelves as revealed by n-alkanes, OC and δ13C values
    Fernandes, MB
    Sicre, MA
    [J]. ORGANIC GEOCHEMISTRY, 2000, 31 (05) : 363 - 374
  • [20] Mineralisation of dissolved organic matter by heterotrophic stream biofilm communities in a large boreal catchment
    Franke, Doreen
    Bonnell, E. Jennifer
    Ziegler, Susan E.
    [J]. FRESHWATER BIOLOGY, 2013, 58 (10) : 2007 - 2026