共 74 条
Aquatic biomass is a major source to particulate organic matter export in large Arctic rivers
被引:12
作者:
Behnke, Megan I.
[1
,2
]
Tank, Suzanne E.
[3
]
McClelland, James W.
[4
]
Holmes, Robert M.
[5
]
Haghipour, Negar
[6
,7
]
Eglinton, Timothy I.
[6
]
Raymond, Peter A.
[8
]
Suslova, Anya
[5
]
Zhulidov, Alexander, V
[9
]
Gurtovaya, Tatiana
[9
]
Zimov, Nikita
[10
]
Zimov, Sergey
[10
]
Mutter, Edda A.
[11
]
Amos, Edwin
[12
]
Spencer, Robert G. M.
[2
]
Rinaldo, Andrea
[2
]
机构:
[1] Univ Alaska Southeast, Alaska Coastal Rainforest Ctr, Juneau, AK 99801 USA
[2] Florida State Univ, Natl High Magnet Field Lab Geochem Grp, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL 32306 USA
[3] Univ Alberta, Biol Sci, Edmonton, AB T6G 2R3, Canada
[4] Univ Texas, Marine Sci Inst, Port Aransas, TX 78373 USA
[5] Woodwell Climate Res Ctr, Falmouth, MA 02540 USA
[6] Swiss Fed Inst Technol, Dept Earth Sci, Geol Inst, CH-8092 Zurich, Switzerland
[7] Swiss Fed Inst Technol, Lab Beam Phys, CH-8093 Zurich, Switzerland
[8] Yale Univ, Sch Forestry & Environm Studies, New Haven, CT 06520 USA
[9] South Russia Centre Preparat & Implementat Int Pr, Rostov Na Donu 344090, Russia
[10] Russian Acad Sci, Pacific Geog Inst, Far East Branch, Cherskii 678830, Russia
[11] Yukon River Intertribal Watershed Council, Anchorage, AK 99501 USA
[12] Western Arctic Res Ctr, Inuvik, NT X0E 0T0, Canada
来源:
基金:
美国国家科学基金会;
关键词:
Arctic;
rivers;
particulate organic;
endmember;
carbon flux;
LAKE FOOD WEBS;
GROWTH EFFICIENCY;
PERMAFROST THAW;
STABLE CARBON;
BEAUFORT SEA;
SEDIMENT;
STREAM;
TRANSPORT;
BURIAL;
INPUTS;
D O I:
10.1073/pnas.2209883120
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Arctic rivers provide an integrated signature of the changing landscape and transmit signals of change to the ocean. Here, we use a decade of particulate organic matter (POM) compositional data to deconvolute multiple allochthonous and autochthonous pan-Arctic and watershed-specific sources. Constraints from carbon-to-nitrogen ratios (C:N), delta C-13, and Delta C-14 signatures reveal a large, hitherto overlooked contribution from aquatic biomass. Separation in Delta C-14 age is enhanced by splitting soil sources into shallow and deep pools (mean +/- SD: -228 +/- 211 vs. - 492 +/- 173%) rather than traditional active layer and permafrost pools (-300 +/- 236 vs. -441 +/- 215%) that do not represent permafrost-free Arctic regions. We estimate that 39 to 60% (5 to 95% credible interval) of the annual pan-Arctic POM flux (averaging 4,391 Gg/y particulate organic carbon from 2012 to 2019) comes from aquatic biomass. The remainder is sourced from yedoma, deep soils, shallow soils, petrogenic inputs, and fresh terrestrial production. Climate change-induced warming and increasing CO2 concentrations may enhance both soil destabilization and Arctic river aquatic biomass production, increasing fluxes of POM to the ocean. Younger, autochthonous, and older soil-derived POM likely have different destinies (preferential microbial uptake and processing vs. significant sediment burial, respectively). A small (similar to 7%) increase in aquatic biomass POM flux with warming would be equivalent to a similar to 30% increase in deep soil POM flux. There is a clear need to better quantify how the balance of endmember fluxes may shift with different ramifications for different endmembers and how this will impact the Arctic system.
引用
收藏
页数:9
相关论文