Research Advances on the Stability of mRNA Vaccines

被引:75
作者
Cheng, Feiran [1 ,2 ]
Wang, Yiping [3 ]
Bai, Yu [1 ,2 ]
Liang, Zhenglun [1 ,2 ]
Mao, Qunying [1 ,2 ]
Liu, Dong [1 ,2 ]
Wu, Xing [1 ,2 ]
Xu, Miao [1 ,2 ]
机构
[1] Natl Inst Food & Drug Control, Inst Biol Prod, Natl Med Prod Adm Key Lab Qual Res & Evaluat Biol, Beijing 102600, Peoples R China
[2] Natl Inst Food & Drug Control, Natl Hlth Commiss Key Lab Res Qual & Standardizat, Beijing 102600, Peoples R China
[3] Natl Inst Food & Drug Control, Ctr Reference Mat & Standardizat, Beijing 102600, Peoples R China
来源
VIRUSES-BASEL | 2023年 / 15卷 / 03期
关键词
mRNA; vaccines; stability; lipid nanoparticle; degradation; LONG-TERM STORAGE; LIPID NANOPARTICLES; NUCLEOSIDE MODIFICATIONS; PHOSPHODIESTER BONDS; CODON; CELL; PSEUDOURIDINE; OPTIMIZATION; LIPOSOME; CAPACITY;
D O I
10.3390/v15030668
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Compared to other vaccines, the inherent properties of messenger RNA (mRNA) vaccines and their interaction with lipid nanoparticles make them considerably unstable throughout their life cycles, impacting their effectiveness and global accessibility. It is imperative to improve mRNA vaccine stability and investigate the factors influencing stability. Since mRNA structure, excipients, lipid nanoparticle (LNP) delivery systems, and manufacturing processes are the primary factors affecting mRNA vaccine stability, optimizing mRNA structure and screening excipients can effectively improve mRNA vaccine stability. Moreover, improving manufacturing processes could also prepare thermally stable mRNA vaccines with safety and efficacy. Here, we review the regulatory guidance associated with mRNA vaccine stability, summarize key factors affecting mRNA vaccine stability, and propose a possible research path to improve mRNA vaccine stability.
引用
收藏
页数:16
相关论文
共 116 条
[1]   mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials [J].
A Feldman, Robert ;
Fuhr, Rainard ;
Smolenov, Igor ;
Ribeiro, Amilcar ;
Panther, Lori ;
Watson, Mike ;
Senn, Joseph J. ;
Smith, Mike ;
Almarsson, Orn ;
Pujar, Hari S. ;
Laska, Michael E. ;
Thompson, James ;
Zaks, Tal ;
Ciaramella, Giuseppe .
VACCINE, 2019, 37 (25) :3326-3334
[2]   Freeze-drying of nanoparticles: Formulation, process and storage considerations [J].
Abdelwahed, Wassim ;
Degobert, Ghania ;
Stainmesse, Serge ;
Fessi, Hatem .
ADVANCED DRUG DELIVERY REVIEWS, 2006, 58 (15) :1688-1713
[3]   Lyophilized mRNA-lipid nanoparticle vaccines with long-term stability and high antigenicity against SARS-CoV-2 [J].
Ai, Liangxia ;
Li, Yafei ;
Zhou, Li ;
Yao, Wenrong ;
Zhang, Hao ;
Hu, Zhaoyu ;
Han, Jinyu ;
Wang, Weijie ;
Wu, Junmiao ;
Xu, Pan ;
Wang, Ruiyue ;
Li, Zhangyi ;
Li, Zhouwang ;
Wei, Chengliang ;
Liang, Jianqun ;
Chen, Haobo ;
Yang, Zhimiao ;
Guo, Ming ;
Huang, Zhixiang ;
Wang, Xin ;
Zhang, Zhen ;
Xiang, Wenjie ;
Sun, Dazheng ;
Xu, Lianqiang ;
Huang, Meiyan ;
Lv, Bin ;
Peng, Peiqi ;
Zhang, Shangfeng ;
Ji, Xuhao ;
Luo, Huiyi ;
Chen, Nanping ;
Chen, Jianping ;
Lan, Ke ;
Hu, Yong .
CELL DISCOVERY, 2023, 9 (01)
[4]   Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses [J].
Alameh, Mohamad-Gabriel ;
Tombacz, Istvan ;
Bettini, Emily ;
Lederer, Katlyn ;
Sittplangkoon, Chutamath ;
Wilmore, Joel R. ;
Gaudette, Brian T. ;
Soliman, Ousamah Y. ;
Pine, Matthew ;
Hicks, Philip ;
Manzoni, Tomaz B. ;
Knox, James J. ;
Johnson, John L. ;
Laczko, Dorottya ;
Muramatsu, Hiromi ;
Davis, Benjamin ;
Meng, Wenzhao ;
Rosenfeld, Aaron M. ;
Strohmeier, Shirin ;
Lin, Paulo J. C. ;
Mui, Barbara L. ;
Tam, Ying K. ;
Kariko, Katalin ;
Jacquet, Alain ;
Krammer, Florian ;
Bates, Paul ;
Cancro, Michael P. ;
Weissman, Drew ;
Prak, Eline T. Luning ;
Allman, David ;
Locci, Michela ;
Pardi, Norbert .
IMMUNITY, 2021, 54 (12) :2877-+
[5]   Nucleoside modifications in RNA limit activation of 2'-5'-oligoadenylate synthetase and increase resistance to cleavage by RNase L [J].
Anderson, Bart R. ;
Muramatsu, Hiromi ;
Jha, Babal K. ;
Silverman, Robert H. ;
Weissman, Drew ;
Kariko, Katalin .
NUCLEIC ACIDS RESEARCH, 2011, 39 (21) :9329-9338
[6]   N1-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice [J].
Andries, Oliwia ;
Mc Cafferty, Sean ;
De Smedt, Stefaan C. ;
Weiss, Ron ;
Sanders, Niek N. ;
Kitada, Tasuku .
JOURNAL OF CONTROLLED RELEASE, 2015, 217 :337-344
[7]   Translational Pharmacokinetic/Pharmacodynamic Model for mRNA-3927, an Investigational Therapeutic for the Treatment of Propionic Acidemia [J].
Attarwala, Husain ;
Lumley, Matthew ;
Liang, Min ;
Ivaturi, Vijay ;
Senn, Joe .
NUCLEIC ACID THERAPEUTICS, 2023, 33 (02) :141-147
[8]   Formulation of Biocompatible Targeted ECO/siRNA Nanoparticles with Long-Term Stability for Clinical Translation of RNAi [J].
Ayat, Nadia R. ;
Sun, Zhanhu ;
Sun, Da ;
Yin, Michelle ;
Hall, Ryan C. ;
Vaidya, Amita M. ;
Liu, Xujie ;
Schilb, Andrew L. ;
Scheidt, Josef H. ;
Lu, Zheng-Rong .
NUCLEIC ACID THERAPEUTICS, 2019, 29 (04) :195-207
[9]   Research progress on circular RNA vaccines [J].
Bai, Yu ;
Liu, Dong ;
He, Qian ;
Liu, Jianyang ;
Mao, Qunying ;
Liang, Zhenglun .
FRONTIERS IN IMMUNOLOGY, 2023, 13
[10]   Achieving long-term stability of lipid nanoparticles: examining the effect of pH, temperature, and lyophilization [J].
Ball, Rebecca L. ;
Bajaj, Palak ;
Whitehead, Kathryn A. .
INTERNATIONAL JOURNAL OF NANOMEDICINE, 2017, 12 :305-315