Fabrication of polydopamine-boehmite modified superhydrophobic coating for self-cleaning, oil-water separation, oil sorption and flame retardancy

被引:16
|
作者
Wang, Bo [1 ]
Liu, Xiaogang [1 ]
Miao, Xinrui [1 ]
Deng, Wenli [1 ]
机构
[1] South China Univ Technol, Coll Mat Sci & Engn, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
Superhydrophobic; Multifunctional; Boehmite particles; Polydopamine; Flame retardant; POLYURETHANE SPONGE; FACILE SYNTHESIS; ROBUST; ABSORPTION; EFFICIENT; SURFACES; MESHES; ROUTE; PAPER;
D O I
10.1016/j.surfin.2023.102775
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A facile approach for fabricating multifunctional superhydrophobic coating was developed through a simple dip-coating process. The boehmite particles (BMPs) were adhered and modified onto stainless steel (SS) mesh through polydopamine (PDA), which was formed by the oxygen-induced polymerization of dopamine (DA). Therefore, the roughness structure (SS-PDA@BMPs mesh) was obtained. Meanwhile, due to the catechol group of the PDA, cetylamine (CTA) with low surface energy and amino group was grafted onto PDA via the Michael addition reaction to construct the superhydrophobic coating (CTA@PDA@BMPs). The effects of the morphology of BMPs, the ratio of BMPs to DA, the reaction time, and the concentration of CTA on superhydrophobicity of SS-CTA@PDA@BMPs mesh were discussed, which showed the water contact angle of 164 degrees and the sliding angle of 3 degrees for the SS-CTA@PDA@BMPs mesh fabricated under optimal conditions. The SS-CTA@PDA@BMPs mesh with great chemical stability and mechanical durability displayed excellent self-cleaning property and oil/water separation efficiency. When the PU sponge was coated with CTA@PDA@BMPs coating by the same process, the superhydrophobic PU sponge was obtained, which exhibited superior reusability and flame retardancy property. Thus, the prepared superhydrophobic materials are multifunctional and environmentally friendly.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] FABRICATION OF SUPERHYDROPHOBIC COATING WITH SELF-CLEANING AND OIL-WATER SEPARATION PROPERTIES
    Fan, Shumin
    Tang, Lulu
    Fan, Wenxiu
    Zhuo, Kelei
    Xu, Guangri
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES B-CHEMISTRY AND MATERIALS SCIENCE, 2024, 86 (02): : 189 - 200
  • [2] Fabrication of polydopamine-coated superhydrophobic fabrics for oil/water separation and self-cleaning
    Xu, Zhanglian
    Miyazaki, Koji
    Hori, Teruo
    APPLIED SURFACE SCIENCE, 2016, 370 : 243 - 251
  • [3] Eco-friendly preparation of robust superhydrophobic Cu(OH)2 coating for self-cleaning, oil-water separation and oil sorption
    Deng, Wanshun
    Long, Mengying
    Miao, Xinrui
    Wen, Ni
    Deng, Wenli
    SURFACE & COATINGS TECHNOLOGY, 2017, 325 : 14 - 21
  • [4] Fabrication of CuO/TMSPM Coated Superhydrophobic Fabric for Self-cleaning and Oil-water Separation
    Pal, Sukanta
    Mondal, Sourav
    Das, Ajit
    Maity, Jayanta
    FIBERS AND POLYMERS, 2021, 22 (12) : 3517 - 3525
  • [5] Fabrication of CuO/TMSPM Coated Superhydrophobic Fabric for Self-cleaning and Oil-water Separation
    Sukanta Pal
    Sourav Mondal
    Ajit Das
    Jayanta Maity
    Fibers and Polymers, 2021, 22 : 3517 - 3525
  • [6] Multifunctional and fluorine-free superhydrophobic composite coating based on PDMS modified MWCNTs/ZnO with self-cleaning, oil-water separation, and flame retardant properties
    Barthwal, Subodh
    Barthwal, Sumit
    Singh, Bhim
    Singh, Nakshatra Bahadur
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2020, 597
  • [7] Superhydrophobic Coatings with Periodic Ring Structured Patterns for Self-Cleaning and Oil-Water Separation
    Wang, Yongjin
    Gong, Xiao
    ADVANCED MATERIALS INTERFACES, 2017, 4 (16):
  • [8] ZnO nanoparticles coated and stearic acid modified superhydrophobic chitosan film for self-cleaning and oil-water separation
    Yu, Mengting
    Yang, Lu
    Yan, Limei
    Wang, Tao
    Wang, Yanfei
    Qin, Yang
    Xiong, Liu
    Shi, Rui
    Sun, Qingjie
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 231
  • [9] Preparation of a robust cellulose nanocrystal superhydrophobic coating for self-cleaning and oil-water separation only by spraying
    Huang, Jingda
    Wang, Siqun
    Lyu, Shaoyi
    Fu, Feng
    INDUSTRIAL CROPS AND PRODUCTS, 2018, 122 : 438 - 447
  • [10] Preparation of Durable Superhydrophobic Cotton Fabric for Self-cleaning and Oil-water Separation
    Xu, Qingbo
    Ke, Xiating
    Zhang, Yanyan
    Wang, Peng
    FIBERS AND POLYMERS, 2022, 23 (06) : 1572 - 1581