Electrical conductivity enhancement of epitaxially grown TiN thin films

被引:11
作者
Khim, Yeong Gwang [1 ,2 ]
Park, Beomjin [1 ,2 ]
Heo, Jin Eun [3 ]
Khim, Young Hun [1 ]
Khim, Young Rok [1 ]
Gu, Minseon [1 ]
Rhee, Tae Gyu [1 ,2 ]
Chang, Seo Hyoung [3 ]
Han, Moonsup [1 ]
Chang, Young Jun [1 ,2 ]
机构
[1] Univ Seoul, Dept Phys, Seoul 02504, South Korea
[2] Univ Seoul, Dept Smart Cities, Seoul 02504, South Korea
[3] Chung Ang Univ, Dept Phys, Seoul 06974, South Korea
关键词
TiN; Epitaxial film; Electrode material; Electrical conductivity; DC sputtering; TITANIUM NITRIDE; RESISTIVITY; DEPOSITION; ELECTRODE; DEVICES;
D O I
10.1007/s40042-023-00729-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Titanium nitride (TiN) presents superior electrical conductivity with mechanical and chemical stability and compatibility with the semiconductor fabrication process. Here, we fabricated epitaxial and polycrystalline TiN (111) thin films on MgO (111), sapphire (001), and mica substrates at 640 degrees C and room temperature by using a DC sputtering, respectively. The epitaxial films show less amount of surface oxidation than the polycrystalline ones grown at room temperature. The epitaxial films show drastically reduced resistivity (similar to 30 micro-ohm-cm), much smaller than the polycrystalline films. Temperature-dependent resistivity measurements show a nearly monotonic temperature slope down to low temperature. These results demonstrate that high-temperature growth of TiN thin films leads to significant enhancement of electrical conductivity, promising for durable and scalable electrode applications.
引用
收藏
页码:486 / 490
页数:5
相关论文
共 39 条
[1]   Deposition of conformal copper and nickel films from supercritical carbon dioxide [J].
Blackburn, JM ;
Long, DP ;
Cabañas, A ;
Watkins, JJ .
SCIENCE, 2001, 294 (5540) :141-145
[2]   Controlling the TiN Electrode Work Function at the Atomistic Level: A First Principles Investigation [J].
Calzolari, Arrigo ;
Catellani, Alessandra .
IEEE ACCESS, 2020, 8 :156308-156313
[3]   Phase, grain structure, stress, and resistivity of sputter-deposited tungsten films [J].
Choi, Dooho ;
Wang, Bincheng ;
Chung, Suk ;
Liu, Xuan ;
Darbal, Amith ;
Wise, Adam ;
Nuhfer, Noel T. ;
Barmak, Katayun ;
Warren, Andrew P. ;
Coffey, Kevin R. ;
Toney, Michael F. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2011, 29 (05)
[4]   Fine structure of the charge density wave in bulk VTe2 [J].
Duvjir, Ganbat ;
Jung, Jee-Ahn ;
Ly, Trinh Thi ;
Lam, Nguyen Huu ;
Chang, Young Jun ;
Lee, Sunghun ;
Kim, Hanchul ;
Kim, Jungdae .
APL MATERIALS, 2022, 10 (11)
[5]   Emergence of a Metal-Insulator Transition and High-Temperature Charge-Density Waves in VSe2 at the Monolayer Limit [J].
Duvjir, Ganbat ;
Choi, Byoung Ki ;
Jang, Iksu ;
Ulstrup, Soren ;
Kang, Soonmin ;
Trinh Thi Ly ;
Kim, Sanghwa ;
Choi, Young Hwan ;
Jozwiak, Chris ;
Bostwick, Aaron ;
Rotenberg, Eli ;
Park, Je-Geun ;
Sankar, Raman ;
Kim, Ki-Seok ;
Kim, Jungdae ;
Chang, Young Jun .
NANO LETTERS, 2018, 18 (09) :5432-5438
[6]   Titanium Nitride Epitaxial Films as a Plasmonic Material Platform: Alternative to Gold [J].
Guo, Wan-Ping ;
Mishra, Ragini ;
Cheng, Chang-Wei ;
Wu, Bao-Hsien ;
Chen, Lih-Juann ;
Lin, Minn-Tsong ;
Gwo, Shangjr .
ACS PHOTONICS, 2019, 6 (08) :1848-1854
[7]   Atomic Layer Deposition of Iridium Thin Films by Consecutive Oxidation and Reduction Steps [J].
Hamalainen, Jani ;
Puukilainen, Esa ;
Kemell, Marianna ;
Costelle, Leila ;
Ritala, Mikko ;
Leskela, Markku .
CHEMISTRY OF MATERIALS, 2009, 21 (20) :4868-4872
[8]   Ultrathin TiN Epitaxial Films as Transparent Conductive Electrodes [J].
Ho, I. Hong ;
Chang, Ching-Wen ;
Chen, Yen-Lin ;
Chang, Wan-Yu ;
Kuo, Ting-Jui ;
Lu, Yu-Jung ;
Gwo, Shangjr ;
Ahn, Hyeyoung .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (14) :16839-16845
[9]   Improving oxidation stability of 2D MXenes: synthesis, storage media, and conditions [J].
Iqbal, Aamir ;
Hong, Junpyo ;
Ko, Tae Yun ;
Koo, Chong Min .
NANO CONVERGENCE, 2021, 8 (01)
[10]   A review on morphotropic phase boundary in fluorite-structure hafnia towards DRAM technology [J].
Jung, Minhyun ;
Gaddam, Venkateswarlu ;
Jeon, Sanghun .
NANO CONVERGENCE, 2022, 9 (01)