Weighted alignment-based multi-source domain adaptation for object detection

被引:0
作者
Han, Joonhwan [1 ]
Woo, Seungbeom [1 ]
Hwang, Joong-won [2 ]
Hwang, Wonjun [1 ]
机构
[1] Ajou Univ, Dept AI, Suwon, Gyeonggi Do, South Korea
[2] Elect & Telecommun Res Inst, Daejeon, South Korea
基金
新加坡国家研究基金会;
关键词
convolutional neural nets; object detection;
D O I
10.1049/ell2.12720
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Beyond single-source domain adaption (DA) for object detection, multi-source domain adaptation for object detection is another challenge because the authors should solve the multiple domain shifts between the source and target domains as well as between multiple source domains. In this letter, the authors propose a novel multi-source domain adaptation via weighted alignment for object detection where the authors adopt a teacher-student framework. The authors first propose the weighted multiple binary discriminator (MBD) to align the multiple domains considering individual domain shifts. The authors also design the weighted class balance loss (CBL) that aligns the different weights to efficiently learn the detection model even if the number of objects is not balanced in an image under the teacher-student learning scheme. The authors empirically prove the superiority of our method on widely used benchmarks such as Cityscapes, KITTI, and BDD100k datasets.
引用
收藏
页数:3
相关论文
共 14 条
[1]  
Chen Jiaxin, 2022, P IEEE CVF C COMP VI, P5301
[2]   Domain Adaptive Faster R-CNN for Object Detection in the Wild [J].
Chen, Yuhua ;
Li, Wen ;
Sakaridis, Christos ;
Dai, Dengxin ;
Van Gool, Luc .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :3339-3348
[3]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[4]  
Ganin Y, 2015, PR MACH LEARN RES, V37, P1180
[5]  
Geiger A, 2012, PROC CVPR IEEE, P3354, DOI 10.1109/CVPR.2012.6248074
[6]  
Liu Y.C., 2021, P INT C LEARNING REP
[7]   Information-theoretic regularization for Multi-source Domain Adaptation [J].
Park, Geon Yeong ;
Lee, Sang Wan .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :9194-9203
[8]   Moment Matching for Multi-Source Domain Adaptation [J].
Peng, Xingchao ;
Bai, Qinxun ;
Xia, Xide ;
Huang, Zijun ;
Saenko, Kate ;
Wang, Bo .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :1406-1415
[9]   Strong-Weak Distribution Alignment for Adaptive Object Detection [J].
Saito, Kuniaki ;
Ushiku, Yoshitaka ;
Harada, Tatsuya ;
Saenko, Kate .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :6949-6958
[10]   The iNaturalist Species Classification and Detection Dataset [J].
Van Horn, Grant ;
Mac Aodha, Oisin ;
Song, Yang ;
Cui, Yin ;
Sun, Chen ;
Shepard, Alex ;
Adam, Hartwig ;
Perona, Pietro ;
Belongie, Serge .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :8769-8778