Deep Learning to Classify AL versus ATTR Cardiac Amyloidosis MR Images

被引:3
|
作者
Germain, Philippe [1 ]
Vardazaryan, Armine [2 ,3 ]
Labani, Aissam [1 ]
Padoy, Nicolas [2 ,3 ]
Roy, Catherine [1 ]
El Ghannudi, Soraya [1 ,4 ]
机构
[1] Univ Hosp, Nouvel Hop Civil, Dept Radiol, F-67091 Strasbourg, France
[2] Univ Strasbourg, ICube, CNRS, F-67000 Strasbourg, France
[3] IHU, F-67000 Strasbourg, France
[4] Univ Hosp, Nouvel Hop Civil, Dept Nucl Med, F-67091 Strasbourg, France
关键词
cardiac amyloidosis; light chain; transthyretine; deep learning; convolutional neural network; algorithm vs; human comparison; LATE GADOLINIUM ENHANCEMENT; MAGNETIC-RESONANCE; LIGHT-CHAIN; DIFFERENTIATION; DIAGNOSIS;
D O I
10.3390/biomedicines11010193
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The aim of this work was to compare the classification of cardiac MR-images of AL versus ATTR amyloidosis by neural networks and by experienced human readers. Cine-MR images and late gadolinium enhancement (LGE) images of 120 patients were studied (70 AL and 50 TTR). A VGG16 convolutional neural network (CNN) was trained with a 5-fold cross validation process, taking care to strictly distribute images of a given patient in either the training group or the test group. The analysis was performed at the patient level by averaging the predictions obtained for each image. The classification accuracy obtained between AL and ATTR amyloidosis was 0.750 for cine-CNN, 0.611 for Gado-CNN and between 0.617 and 0.675 for human readers. The corresponding AUC of the ROC curve was 0.839 for cine-CNN, 0.679 for gado-CNN (p < 0.004 vs. cine) and 0.714 for the best human reader (p < 0.007 vs. cine). Logistic regression with cine-CNN and gado-CNN, as well as analysis focused on the specific orientation plane, did not change the overall results. We conclude that cine-CNN leads to significantly better discrimination between AL and ATTR amyloidosis as compared to gado-CNN or human readers, but with lower performance than reported in studies where visual diagnosis is easy, and is currently suboptimal for clinical practice.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Deep Learning Supplants Visual Analysis by Experienced Operators for the Diagnosis of Cardiac Amyloidosis by Cine-CMR
    Germain, Philippe
    Vardazaryan, Armine
    Padoy, Nicolas
    Labani, Aissam
    Roy, Catherine
    Schindler, Thomas Hellmut
    El Ghannudi, Soraya
    DIAGNOSTICS, 2022, 12 (01)
  • [2] Deep-learning-based cardiac amyloidosis classification from early acquired pet images
    Santarelli, Maria Filomena
    Genovesi, Dario
    Positano, Vincenzo
    Scipioni, Michele
    Vergaro, Giuseppe
    Favilli, Brunella
    Giorgetti, Assuero
    Emdin, Michele
    Landini, Luigi
    Marzullo, Paolo
    INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2021, 37 (07) : 2327 - 2335
  • [3] Detection of cardiac amyloidosis on electrocardiogram images using machine learning and deep learning techniques
    Gnanadurai, Gladys Jebakumari
    Raaza, Arun
    Velayutham, Rajendran
    Palani, Sathish Kumar
    Bramwell, Ebenezer Abishek
    COMPUTATIONAL INTELLIGENCE, 2023, 39 (04) : 554 - 576
  • [4] Deep-learning-based cardiac amyloidosis classification from early acquired pet images
    Maria Filomena Santarelli
    Dario Genovesi
    Vincenzo Positano
    Michele Scipioni
    Giuseppe Vergaro
    Brunella Favilli
    Assuero Giorgetti
    Michele Emdin
    Luigi Landini
    Paolo Marzullo
    The International Journal of Cardiovascular Imaging, 2021, 37 : 2327 - 2335
  • [5] CMR-Based Differentiation of AL and ATTR Cardiac Amyloidosis
    Dungu, Jason N.
    Valencia, Oswaldo
    Pinney, Jennifer H.
    Gibbs, Simon D. J.
    Rowczenio, Dorota
    Gilbertson, Janet A.
    Lachmann, Helen J.
    Wechalekar, Ashutosh
    Gillmore, Julian D.
    Whelan, Carol J.
    Hawkins, Philip N.
    Anderson, Lisa J.
    JACC-CARDIOVASCULAR IMAGING, 2014, 7 (02) : 133 - 142
  • [6] Imaging Options in Cardiac Amyloidosis: Differentiating AL from ATTR
    Pawar S.
    Haq M.
    Ruberg F.L.
    Miller E.J.
    Current Cardiovascular Imaging Reports, 2017, 10 (1)
  • [7] United network for organ sharing outcomes after heart transplantation for al compared to ATTR cardiac amyloidosis
    Griffin, Jan M.
    Chiu, Leonard
    Axsom, Kelly M.
    Bijou, Rachel
    Clerkin, Kevin J.
    Colombo, Paolo
    Cuomo, Margaret O.
    De Los Santos, Jeffeny
    Fried, Justin A.
    Goldsmith, Jeff
    Habal, Marlena
    Haythe, Jennifer
    Helmke, Stephen
    Horn, Evelyn M.
    Latif, Farhana
    Lee, Sun Hi
    Lin, Edward F.
    Naka, Yoshifumi
    Raikhelkar, Jayant
    Restaino, Susan
    Sayer, Gabriel T.
    Takayama, Hiroo
    Takeda, Koji
    Teruya, Sergio
    Topkara, Veli
    Tsai, Emily J.
    Uriel, Nir
    Yuzefpolskaya, Melana
    Farr, Maryjane A.
    Maurer, Mathew S.
    CLINICAL TRANSPLANTATION, 2020, 34 (10)
  • [8] Native T1 mapping in ATTR cardiac amyloidosis - comparison with AL cardiac amyloidosis - a 200 patient study
    Marianna Fontana
    Sanjay M Banypersad
    Thomas A Treibel
    Viviana Maestrini
    Daniel Sado
    Steven K White
    Silvia Castelletti
    Anna S Herrey
    Philip N Hawkins
    James Moon
    Journal of Cardiovascular Magnetic Resonance, 16 (Suppl 1)
  • [9] Disease progression in cardiac morphology and function in heart failure: ATTR cardiac amyloidosis versus hypertensive left ventricular hypertrophy
    Henein, M. Y.
    Pilebro, B.
    Lindqvist, Per
    HEART AND VESSELS, 2022, 37 (09) : 1562 - 1569
  • [10] The Mayo ATTR-CM score versus other diagnostic scores and cardiac biomarkers in patients with suspected cardiac amyloidosis
    Bonfioli, Giovanni Battista
    Tomasoni, Daniela
    Vergaro, Giuseppe
    Castiglione, Vincenzo
    Adamo, Marianna
    Fabiani, Iacopo
    Loghin, Victor
    Lombardi, Carlo Mario
    Nicolai, Alessio
    Metra, Marco
    Emdin, Michele
    Aimo, Alberto
    EUROPEAN JOURNAL OF HEART FAILURE, 2024,