Emergence of vortices at the edges of planet-driven gaps in protoplanetary discs

被引:10
|
作者
Cimerman, Nicolas P. [1 ]
Rafikov, Roman R. [1 ,2 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Wilberforce Rd, Cambridge CB3 0WA, England
[2] Inst Adv Study, Einstein Dr, Princeton, NJ 08540 USA
基金
英国科学技术设施理事会; 英国工程与自然科学研究理事会;
关键词
accretion; accretion discs; hydrodynamics; instabilities; shock waves; methods: numerical; planets and satellites: formation; ROSSBY-WAVE INSTABILITY; SUPER-EARTHS; LOW-MASS; DISKS; MIGRATION; VISCOSITY; VORTEX; RINGS; SUBSTRUCTURES; PROPAGATION;
D O I
10.1093/mnras/stac3507
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Young planets embedded in protoplanetary discs (PPDs) excite spiral density waves, which propagate shock and deposit angular momentum in the disc. This results in gap opening around the planetary orbit, even for low (sub-thermal) mass planets, provided that the effective viscosity in the disc is low. The edges of these planet-induced gaps are known to be prone to emergence of observable vortices via the Rossby wave instability (RWI). We study time-scales for the development of vortices driven by low-mass planets in inviscid discs. We employ a recently developed semi-analytical theory of vortensity production by the planet-driven shock to predict vortensity evolution near the planet, from which we derive the radial profile of the planet-induced gap as a function of time (this procedure can have multiple other uses, e.g. to study dust trapping, suppression of pebble accretion, etc.). We then analyse the linear stability of the gap edges against the RWI, obtaining the time-scales for the first appearance of unstable modes and (later) fully developed vortices at gap edges. We present useful formulae for these time-scales as functions of planetary and disc parameters and provide their physical justification. We also thoroughly test our semi-analytical framework against high-resolution 2D hydrodynamic simulations, confirming the accuracy of our theoretical predictions. We discuss ways in which our semi-analytical framework can be extended to incorporate additional physics, e.g. planetary accretion, migration, and non-zero disc viscosity. Our results can be used to interpret observations of PPDs and to predict emergence of vortices in simulations.
引用
收藏
页码:208 / 227
页数:20
相关论文
共 50 条
  • [21] Gaps and rings carved by vortices in protoplanetary dust
    Barge, Pierre
    Ricci, Luca
    Carilli, Christopher Luke
    Previn-Ratnasingam, Rathish
    ASTRONOMY & ASTROPHYSICS, 2017, 605
  • [22] Giant planet formation in radially structured protoplanetary discs
    Coleman, Gavin A. L.
    Nelson, Richard P.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 460 (03) : 2779 - 2795
  • [23] Vortices and the saturation of the vertical shear instability in protoplanetary discs
    Latter, Henrik N.
    Papaloizou, John
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 474 (03) : 3110 - 3124
  • [24] Magnetically driven accretion in protoplanetary discs
    Simon, Jacob B.
    Lesur, Geoffroy
    Kunz, Matthew W.
    Armitage, Philip J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 454 (01) : 1117 - 1131
  • [25] Planet gaps in the dust layer of 3D protoplanetary disks
    Fouchet, L.
    Gonzalez, J. -F.
    Maddison, S. T.
    ASTRONOMY & ASTROPHYSICS, 2010, 518
  • [26] Vortices as nurseries for planetesimal formation in protoplanetary discs
    Heng, Kevin
    Kenyon, Scott J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 408 (03) : 1476 - 1493
  • [27] Using planet migration and dust drift to weigh protoplanetary discs
    Wu, Yinhao
    Baruteau, Clement
    Nayakshin, Sergei
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 523 (04) : 4869 - 4882
  • [28] LONG-TERM EVOLUTION OF PLANET-INDUCED VORTICES IN PROTOPLANETARY DISKS
    Fu, Wen
    Li, Hui
    Lubow, Stephen
    Li, Shengtai
    ASTROPHYSICAL JOURNAL LETTERS, 2014, 788 (02)
  • [29] 3D gap opening in non-ideal MHD protoplanetary discs: asymmetric accretion, meridional vortices, and observational signatures
    Hu, Xiao
    Li, Zhi-Yun
    Bae, Jaehan
    Zhu, Zhaohuan
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 536 (02) : 1374 - 1388
  • [30] Observing Planet-driven Dust Spirals with ALMA
    Speedie, Jessica
    Booth, Richard A.
    Dong, Ruobing
    ASTROPHYSICAL JOURNAL, 2022, 930 (01)