Grain Regrowth and Bifacial Passivation for High-Efficiency Wide-Bandgap Perovskite Solar Cells

被引:78
|
作者
Liu, Zhou [1 ]
Zhu, Changhuai [1 ]
Luo, Haowen [1 ]
Kong, Wenchi [1 ]
Luo, Xin [1 ]
Wu, Jinlong [1 ]
Ding, Changzeng [2 ,3 ]
Chen, Yiyao [4 ]
Wang, Yurui [1 ]
Wen, Jin [1 ]
Gao, Yuan [1 ]
Tan, Hairen [1 ]
机构
[1] Nanjing Univ, Coll Engn & Appl Sci, Frontiers Sci Ctr Crit Earth Mat Cycling, Natl Lab Solid State Microstruct, Nanjing 210023, Peoples R China
[2] Chinese Acad Sci, Suzhou Inst Nanotec & Nanob, i Lab, Suzhou 215123, Peoples R China
[3] Chinese Acad Sci, Printable Elect Res Ctr, Suzhou Inst Nanotec & Nanob, Suzhou 215123, Peoples R China
[4] Chinese Acad Sci, Suzhou Inst Nanotech & Nanob SINANO, Vacuum Interconnected Nanotech Workstat Nano X, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金;
关键词
4-T tandem solar cells; bifacial passivation; grain regrowth; nonradiative recombination losses; semitransparent PSCs; HALIDE PEROVSKITES; LIMIT;
D O I
10.1002/aenm.202203230
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The wide-bandgap perovskite solar cell is a crucial part of perovskite/silicon tandem solar cells, which offer an avenue for surpassing the power conversion efficiency (PCE) limit of single-junction silicon solar cells. However, the actual efficiency of such tandem solar cells today is diminished by the nonradiative recombination losses in the wide-bandgap perovskite subcells. Here, this work reports a grain regrowth and bifacial passivation (GRBP) strategy to reduce recombination losses at the grain boundaries and perovskite/charge transport layer interfaces simultaneously. This is achieved by a posttreatment of perovskite films with a mixture of methylammonium thiocyanate (MASCN) and phenethylammonium iodide (PEAI). The MASCN induces the regrowth of perovskite grains and simultaneously facilitates the penetration of PEAI into the hole-transport-layer (HTL)/perovskite bottom interface. Thereby, the bulk and interface nonradiative recombination losses are reduced and the open-circuit voltage in solar cells is considerably increased. PCEs of 21.9% and 19.9% for the 1.65-eV bandgap opaque and semitransparent perovskite solar cells, respectively, are obtained. The encapsulated semitransparent perovskite solar cells retain their initial efficiency following 500 h of operation under one-sun illumination in ambient conditions. The perovskite/silicon 4-terminal (4-T) tandem cells are fabricated with impressive PCEs 29.8% and 28.5% for 0.049 cm(2) and 1 cm(2) devices, respectively.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Multifunctional molecule interface modification for high-performance inverted wide-bandgap perovskite cells and modules
    Yang, Yang
    Chang, Qing
    Yang, Yuyao
    Jiang, Yuhui
    Dai, Zhiyuan
    Huang, Xiaofeng
    Huo, Jiangwei
    Guo, Pengfei
    Shen, Hui
    Liu, Zhe
    Chen, Ruihao
    Wang, Hongqiang
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (31) : 16871 - 16877
  • [42] Unveiling recombination in top cells: SCAPS-1D simulations for high-efficiency bifacial planar perovskite/silicon tandem solar cells
    He, Yizhou
    Chen, Hongzhuo
    Wang, Shiqiang
    Wang, Qi
    Zhang, Chi
    Hao, Qianxi
    Li, Ruoyu
    Li, Shaorong
    Liu, Xiaodong
    Guo, Xiaowei
    SOLAR ENERGY, 2024, 282
  • [43] Custom-tailored solvent engineering for efficient wide-bandgap perovskite solar cells with a wide processing window and low VOC losses
    Wang, Ruohao
    Zhu, Jingwei
    You, Jiayu
    Huang, Hao
    Yang, Yang
    Chen, Ruihao
    Wang, Juncheng
    Xu, Yuliang
    Gao, Zhiyu
    Chen, Jiayue
    Xu, Bangxin
    Wang, Bing
    Chen, Cong
    Zhao, Dewei
    Zhang, Wen-Hua
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (07) : 2662 - 2669
  • [44] Crystallization control of wide-bandgap perovskites for efficient solar cells via adding an anti-solvent into the perovskite precursor
    Liu, Zhihai
    Wang, Lei
    Liu, Xi
    Xie, Xiaoyin
    Chen, Ping
    NANOSCALE, 2024, 16 (15) : 7670 - 7677
  • [45] A Two-Step Solution-Processed Wide-Bandgap Perovskite for Monolithic Silicon-Based Tandem Solar Cells with >27% Efficiency
    Chen, Bingbing
    Wang, Pengyang
    Li, Renjie
    Ren, Ningyu
    Han, Wei
    Zhu, Zhao
    Wang, Jin
    Wang, Sanlong
    Shi, Biao
    Liu, Jingjing
    Liu, Pengfei
    Huang, Qian
    Xu, Shengzhi
    Zhao, Ying
    Zhang, Xiaodan
    ACS ENERGY LETTERS, 2022, 7 (08) : 2771 - 2780
  • [46] High-efficiency robust perovskite solar cells on ultrathin flexible substrates
    Li, Yaowen
    Meng, Lei
    Yang, Yang
    Xu, Guiying
    Hong, Ziruo
    Chen, Qi
    You, Jingbi
    Li, Gang
    Yang, Yang
    Li, Yongfang
    NATURE COMMUNICATIONS, 2016, 7
  • [47] A review on recent progress and challenges in high-efficiency perovskite solar cells
    Dastgeer, Ghulam
    Nisar, Sobia
    Zulfiqar, Muhammad Wajid
    Eom, Jonghwa
    Imran, Muhammad
    Akbar, Kamran
    NANO ENERGY, 2024, 132
  • [48] Anti-Solvent-Free Preparation for Efficient and Photostable Pure-Iodide Wide-Bandgap Perovskite Solar Cells
    Nie, Ting
    Fang, Zhimin
    Yang, Tinghuan
    Zhao, Kui
    Ding, Jianning
    Liu, Shengzhong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (17)
  • [49] A Strategy to Achieve High-Efficiency Organolead Trihalide Perovskite Solar Cells
    Andalibi, Shabnam
    Rostami, Ali
    Darvish, Ghafar
    Moravvej-Farshi, Mohammad Kazem
    JOURNAL OF ELECTRONIC MATERIALS, 2016, 45 (11) : 5746 - 5755
  • [50] Enhancement of Interfacial Properties by Indoloquinoxaline-Based Small Molecules for Highly Efficient Wide-Bandgap Perovskite Solar Cells
    Yong, Jihye
    Lee, Yu Kyung
    Park, Hansol
    Muthu, Senthilkumar
    Shin, Juhwan
    Whang, Dong Ryeol
    Kim, Bong-Gi
    Chang, Dong Wook
    Park, Hui Joon
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (14)