Grain Regrowth and Bifacial Passivation for High-Efficiency Wide-Bandgap Perovskite Solar Cells

被引:78
|
作者
Liu, Zhou [1 ]
Zhu, Changhuai [1 ]
Luo, Haowen [1 ]
Kong, Wenchi [1 ]
Luo, Xin [1 ]
Wu, Jinlong [1 ]
Ding, Changzeng [2 ,3 ]
Chen, Yiyao [4 ]
Wang, Yurui [1 ]
Wen, Jin [1 ]
Gao, Yuan [1 ]
Tan, Hairen [1 ]
机构
[1] Nanjing Univ, Coll Engn & Appl Sci, Frontiers Sci Ctr Crit Earth Mat Cycling, Natl Lab Solid State Microstruct, Nanjing 210023, Peoples R China
[2] Chinese Acad Sci, Suzhou Inst Nanotec & Nanob, i Lab, Suzhou 215123, Peoples R China
[3] Chinese Acad Sci, Printable Elect Res Ctr, Suzhou Inst Nanotec & Nanob, Suzhou 215123, Peoples R China
[4] Chinese Acad Sci, Suzhou Inst Nanotech & Nanob SINANO, Vacuum Interconnected Nanotech Workstat Nano X, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金;
关键词
4-T tandem solar cells; bifacial passivation; grain regrowth; nonradiative recombination losses; semitransparent PSCs; HALIDE PEROVSKITES; LIMIT;
D O I
10.1002/aenm.202203230
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The wide-bandgap perovskite solar cell is a crucial part of perovskite/silicon tandem solar cells, which offer an avenue for surpassing the power conversion efficiency (PCE) limit of single-junction silicon solar cells. However, the actual efficiency of such tandem solar cells today is diminished by the nonradiative recombination losses in the wide-bandgap perovskite subcells. Here, this work reports a grain regrowth and bifacial passivation (GRBP) strategy to reduce recombination losses at the grain boundaries and perovskite/charge transport layer interfaces simultaneously. This is achieved by a posttreatment of perovskite films with a mixture of methylammonium thiocyanate (MASCN) and phenethylammonium iodide (PEAI). The MASCN induces the regrowth of perovskite grains and simultaneously facilitates the penetration of PEAI into the hole-transport-layer (HTL)/perovskite bottom interface. Thereby, the bulk and interface nonradiative recombination losses are reduced and the open-circuit voltage in solar cells is considerably increased. PCEs of 21.9% and 19.9% for the 1.65-eV bandgap opaque and semitransparent perovskite solar cells, respectively, are obtained. The encapsulated semitransparent perovskite solar cells retain their initial efficiency following 500 h of operation under one-sun illumination in ambient conditions. The perovskite/silicon 4-terminal (4-T) tandem cells are fabricated with impressive PCEs 29.8% and 28.5% for 0.049 cm(2) and 1 cm(2) devices, respectively.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Molecular Bridge in Wide-Bandgap Perovskites for Efficient and Stable Perovskite/ Silicon Tandem Solar Cells
    Ye, Tianshi
    Qiao, Liang
    Wang, Tao
    Wang, Pengshuai
    Zhang, Lin
    Sun, Ruitian
    Kong, Weiyu
    Xu, Menglei
    Yan, Xunlei
    Yang, Jie
    Zhang, Xinyu
    Yang, Xudong
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [22] Suppressing charge recombination in a methylammonium-free wide-bandgap perovskite film for high-performance and stable perovskite solar cells
    Ye, Qiufeng
    Hu, Wenzheng
    Zhu, Junchi
    Cai, Ziyu
    Zhang, Hengkang
    Dong, Tao
    Yu, Boyang
    Chen, Feiyang
    Wei, Xieli
    Yao, Bo
    Dou, Weidong
    Fang, Zebo
    Ye, Feng
    Liu, Zhun
    Li, Tie
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (16) : 5866 - 5875
  • [23] 25.1% High-Efficiency Monolithic Perovskite Silicon Tandem Solar Cell with a High Bandgap Perovskite Absorber
    Schulze, Patricia S. C.
    Bett, Alexander J.
    Bivour, Martin
    Caprioglio, Pietro
    Gerspacher, Fabian M.
    Kabakl, Ozde S.
    Richter, Armin
    Stolterfoht, Martin
    Zhang, Qinxin
    Neher, Dieter
    Hermle, Martin
    Hillebrecht, Harald
    Glunz, Stefan W.
    Goldschmidt, Jan Christoph
    SOLAR RRL, 2020, 4 (07)
  • [24] Optical modeling of wide-bandgap perovskite and perovskite/silicon tandem solar cells using complex refractive indices for arbitrary-bandgap perovskite absorbers
    Manzoor, Salman
    Haeusele, Jakob
    Bush, Kevin A.
    Palmstrom, Axel F.
    Carpenter, Joe, III
    Yu, Zhengshan J.
    Bent, Stacey F.
    Mcgehee, Michael D.
    Holman, Zachary C.
    OPTICS EXPRESS, 2018, 26 (21): : 27441 - 27460
  • [25] Quasi-2D Bilayer Surface Passivation for High Efficiency Narrow Bandgap Perovskite Solar Cells
    Yu, Danni
    Wei, Qi
    Li, Hansheng
    Xie, Junhan
    Jiang, Xianyuan
    Pan, Ting
    Wang, Hao
    Pan, Mengling
    Zhou, Wenjia
    Liu, Weimin
    Chow, Philip C. Y.
    Ning, Zhijun
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (20)
  • [26] Intermediate Phase Suppression with Long Chain Diammonium Alkane for High Performance Wide-Bandgap and Tandem Perovskite Solar Cells
    Jia, Peng
    Chen, Guoyi
    Li, Guang
    Liang, Jiwei
    Guan, Hongling
    Wang, Chen
    Pu, Dexin
    Ge, Yansong
    Hu, Xuzhi
    Cui, Hongsen
    Du, Shengjie
    Liang, Chao
    Liao, Jinfeng
    Xing, Guichuan
    Ke, Weijun
    Fang, Guojia
    ADVANCED MATERIALS, 2024, 36 (25)
  • [27] Air-Processed Perovskite Films with Inner-to-Outside Passivation for High-Efficiency Solar Cells
    Zhao, Jingcheng
    Yang, Dezhi
    Chen, Rugang
    Yang, Liqing
    Qiao, Xianfeng
    Hou, Lintao
    Chen, Jiangshan
    Ma, Dongge
    SOLAR RRL, 2020, 4 (11):
  • [28] Wide-Bandgap Metal Halide Perovskites for Tandem Solar Cells
    Tong, Jinhui
    Jiang, Qi
    Zhang, Fei
    Kang, Seok Beom
    Kim, Dong Hoe
    Zhu, Kai
    ACS ENERGY LETTERS, 2021, 6 (01): : 232 - 248
  • [29] Continuous Grain-Boundary Functionalization for High-Efficiency Perovskite Solar Cells with Exceptional Stability
    Zong, Yingxia
    Zhou, Yuanyuan
    Zhang, Yi
    Li, Zhipeng
    Zhang, Lin
    Ju, Ming-Gang
    Chen, Min
    Pang, Shuping
    Zeng, Xiao Cheng
    Padture, Nitin P.
    CHEM, 2018, 4 (06): : 1404 - 1415
  • [30] Visualizing the Structure-Property Nexus of Wide-Bandgap Perovskite Solar Cells under Thermal Stress
    Ding, Degong
    Yao, Yuxin
    Hang, Pengjie
    Kan, Chenxia
    Lv, Xiang
    Ma, Xiaoming
    Li, Biao
    Jin, Chuanhong
    Yang, Deren
    Yu, Xuegong
    ADVANCED SCIENCE, 2024, 11 (29)