Grain Regrowth and Bifacial Passivation for High-Efficiency Wide-Bandgap Perovskite Solar Cells

被引:78
|
作者
Liu, Zhou [1 ]
Zhu, Changhuai [1 ]
Luo, Haowen [1 ]
Kong, Wenchi [1 ]
Luo, Xin [1 ]
Wu, Jinlong [1 ]
Ding, Changzeng [2 ,3 ]
Chen, Yiyao [4 ]
Wang, Yurui [1 ]
Wen, Jin [1 ]
Gao, Yuan [1 ]
Tan, Hairen [1 ]
机构
[1] Nanjing Univ, Coll Engn & Appl Sci, Frontiers Sci Ctr Crit Earth Mat Cycling, Natl Lab Solid State Microstruct, Nanjing 210023, Peoples R China
[2] Chinese Acad Sci, Suzhou Inst Nanotec & Nanob, i Lab, Suzhou 215123, Peoples R China
[3] Chinese Acad Sci, Printable Elect Res Ctr, Suzhou Inst Nanotec & Nanob, Suzhou 215123, Peoples R China
[4] Chinese Acad Sci, Suzhou Inst Nanotech & Nanob SINANO, Vacuum Interconnected Nanotech Workstat Nano X, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金;
关键词
4-T tandem solar cells; bifacial passivation; grain regrowth; nonradiative recombination losses; semitransparent PSCs; HALIDE PEROVSKITES; LIMIT;
D O I
10.1002/aenm.202203230
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The wide-bandgap perovskite solar cell is a crucial part of perovskite/silicon tandem solar cells, which offer an avenue for surpassing the power conversion efficiency (PCE) limit of single-junction silicon solar cells. However, the actual efficiency of such tandem solar cells today is diminished by the nonradiative recombination losses in the wide-bandgap perovskite subcells. Here, this work reports a grain regrowth and bifacial passivation (GRBP) strategy to reduce recombination losses at the grain boundaries and perovskite/charge transport layer interfaces simultaneously. This is achieved by a posttreatment of perovskite films with a mixture of methylammonium thiocyanate (MASCN) and phenethylammonium iodide (PEAI). The MASCN induces the regrowth of perovskite grains and simultaneously facilitates the penetration of PEAI into the hole-transport-layer (HTL)/perovskite bottom interface. Thereby, the bulk and interface nonradiative recombination losses are reduced and the open-circuit voltage in solar cells is considerably increased. PCEs of 21.9% and 19.9% for the 1.65-eV bandgap opaque and semitransparent perovskite solar cells, respectively, are obtained. The encapsulated semitransparent perovskite solar cells retain their initial efficiency following 500 h of operation under one-sun illumination in ambient conditions. The perovskite/silicon 4-terminal (4-T) tandem cells are fabricated with impressive PCEs 29.8% and 28.5% for 0.049 cm(2) and 1 cm(2) devices, respectively.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Defect passivation engineering of wide-bandgap perovskites for high-performance solar cells
    Wu, Xiao
    Xiong, Guoqing
    Yue, Ziyao
    Dong, Ziyao
    Cheng, Yuanhang
    MATERIALS CHEMISTRY FRONTIERS, 2024, 8 (03) : 800 - 813
  • [2] Bifunctional Passivation of Wide-Bandgap Perovskite Solar Cells via Long-Chain Organic Ammonium Salts
    Han, Baoyu
    Cai, Hongkun
    Liu, Chao
    Hu, Zhihao
    Liu, Jifeng
    Li, Boyan
    Lin, Shuping
    Sun, Qi
    Li, Yingchen
    Guo, Qinwen
    Ni, Jian
    Li, Juan
    Zhang, Jianjun
    ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (17) : 25400 - 25409
  • [3] Crystallization Enhancement and Ionic Defect Passivation in Wide-Bandgap Perovskite for Efficient and Stable All-Perovskite Tandem Solar Cells
    Qiao, Liang
    Ye, Tianshi
    Wang, Pengshuai
    Wang, Tao
    Zhang, Lin
    Sun, Ruitian
    Kong, Weiyu
    Yang, Xudong
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (07)
  • [4] Matching Charge Extraction Contact for Wide-Bandgap Perovskite Solar Cells
    Lin, Yuze
    Chen, Bo
    Zhao, Fuwen
    Zheng, Xiaopeng
    Deng, Yehao
    Shao, Yuchuan
    Fang, Yanjun
    Bai, Yang
    Wang, Chunru
    Huang, Jinsong
    ADVANCED MATERIALS, 2017, 29 (26)
  • [5] Enhancing Charge Transport of 2D Perovskite Passivation Agent for Wide-Bandgap Perovskite Solar Cells Beyond 21%
    Ye, Jiselle Y.
    Tong, Jinhui
    Hu, Jun
    Xiao, Chuanxiao
    Lu, Haipeng
    Dunfield, Sean P.
    Kim, Dong Hoe
    Chen, Xihan
    Larson, Bryon W.
    Hao, Ji
    Wang, Kang
    Zhao, Qian
    Chen, Zheng
    Hu, Huamin
    You, Wei
    Berry, Joseph J.
    Zhang, Fei
    Zhu, Kai
    SOLAR RRL, 2020, 4 (06)
  • [6] Bifacial stamping for high efficiency perovskite solar cells
    Zhang, Yong
    Kim, Seul-Gi
    Lee, Donghwa
    Shin, Hyunjung
    Park, Nam-Gyu
    ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (01) : 308 - 321
  • [7] Wide-Bandgap Perovskite Solar Cell Using a Fluoride-Assisted Surface Gradient Passivation Strategy
    Yan, Nan
    Gao, Yan
    Yang, Junjie
    Fang, Zhimin
    Feng, Jiangshan
    Wu, Xiaojun
    Chen, Tao
    Liu, Shengzhong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (11)
  • [8] Efficient Semi-Transparent Wide-Bandgap Perovskite Solar Cells Enabled by Pure-Chloride 2D-Perovskite Passivation
    Yang, Liu
    Jin, Yongbin
    Fang, Zheng
    Zhang, Jinyan
    Nan, Ziang
    Zheng, Lingfang
    Zhuang, Huihu
    Zeng, Qinghua
    Liu, Kaikai
    Deng, Bingru
    Feng, Huiping
    Luo, Yujie
    Tian, Chengbo
    Cui, Changcai
    Xie, Liqiang
    Xu, Xipeng
    Wei, Zhanhua
    NANO-MICRO LETTERS, 2023, 15 (01)
  • [9] Additive Combining Passivator for Inverted Wide-Bandgap Perovskite Solar Cells with 22% Efficiency and Reduced Voltage Loss
    Gan, Yu
    Hao, Xia
    Li, Wei
    Zhang, Jingquan
    Wu, Lili
    SOLAR RRL, 2023, 7 (24)
  • [10] Achieving a high open-circuit voltage in inverted wide-bandgap perovskite solar cells with a graded perovskite homojunction
    Chen, Cong
    Song, Zhaoning
    Xiao, Chuanxiao
    Zhao, Dewei
    Shrestha, Niraj
    Li, Chongwen
    Yang, Guang
    Yao, Fang
    Zheng, Xiaolu
    Ellingson, Randy J.
    Jiang, Chun-Sheng
    Al-Jassim, Mowafak
    Zhu, Kai
    Fang, Guojia
    Yan, Yanfa
    NANO ENERGY, 2019, 61 : 141 - 147