Self-Supervised Learning for Electroencephalography

被引:234
作者
Rafiei, Mohammad H. [1 ]
Gauthier, Lynne V. [2 ]
Adeli, Hojjat [3 ,4 ]
Takabi, Daniel [1 ]
机构
[1] Georgia State Univ, Dept Comp Sci, Atlanta, GA 30303 USA
[2] Univ Massachusetts Lowell, Dept Phys Therapy & Kinesiol, Lowell, MA 01854 USA
[3] Ohio State Univ, Dept Biomed Informat, Columbus, OH 43210 USA
[4] Ohio State Univ, Dept Neurosci, Columbus, OH 43210 USA
关键词
Electroencephalography; Brain modeling; Data models; Task analysis; Machine learning; Training; Heuristic algorithms; Electroencephalography (EEG); machine learning; self-supervised learning (SSL); BRAIN-COMPUTER INTERFACE; EMOTION RECOGNITION; NEURAL-NETWORK; EEG; SYSTEM; CLASSIFICATION; SLEEP; FEATURES; FRAMEWORK; ALGORITHM;
D O I
10.1109/TNNLS.2022.3190448
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Decades of research have shown machine learning superiority in discovering highly nonlinear patterns embedded in electroencephalography (EEG) records compared with conventional statistical techniques. However, even the most advanced machine learning techniques require relatively large, labeled EEG repositories. EEG data collection and labeling are costly. Moreover, combining available datasets to achieve a large data volume is usually infeasible due to inconsistent experimental paradigms across trials. Self-supervised learning (SSL) solves these challenges because it enables learning from EEG records across trials with variable experimental paradigms, even when the trials explore different phenomena. It aggregates multiple EEG repositories to increase accuracy, reduce bias, and mitigate overfitting in machine learning training. In addition, SSL could be employed in situations where there is limited labeled training data, and manual labeling is costly. This article: 1) provides a brief introduction to SSL; 2) describes some SSL techniques employed in recent studies, including EEG; 3) proposes current and potential SSL techniques for future investigations in EEG studies; 4) discusses the cons and pros of different SSL techniques; and 5) proposes holistic implementation tips and potential future directions for EEG SSL practices.
引用
收藏
页码:1457 / 1471
页数:15
相关论文
共 177 条
[1]   Machine learning-based EEG signals classification model for epileptic seizure detection [J].
Aayesha ;
Qureshi, Muhammad Bilal ;
Afzaal, Muhammad ;
Qureshi, Muhammad Shuaib ;
Fayaz, Muhammad .
MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (12) :17849-17877
[2]   Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals [J].
Acharya, U. Rajendra ;
Oh, Shu Lih ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adeli, Hojjat .
COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 100 :270-278
[3]  
Adeli H, 2010, AUTOMATED EEG-BASED DIAGNOSIS OF NEUROLOGICAL DISORDERS: INVENTING THE FUTURE OF NEUROLOGY, P1
[4]   Regularization neural network for construction cost estimation [J].
Adeli, H ;
Wu, MY .
JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT, 1998, 124 (01) :18-24
[5]   AN ADAPTIVE CONJUGATE-GRADIENT LEARNING ALGORITHM FOR EFFICIENT TRAINING OF NEURAL NETWORKS [J].
ADELI, H ;
HUNG, SL .
APPLIED MATHEMATICS AND COMPUTATION, 1994, 62 (01) :81-102
[6]   Detection of epileptic seizures from compressively sensed EEG signals for wireless body area networks [J].
Aghababaei, Mohammad H. ;
Azemi, Ghasem ;
O'Toole, John M. .
EXPERT SYSTEMS WITH APPLICATIONS, 2021, 172
[7]   Enhanced probabilistic neural network with local decision circles: A robust classifier [J].
Ahmadlou, Mehran ;
Adeli, Hojjat .
INTEGRATED COMPUTER-AIDED ENGINEERING, 2010, 17 (03) :197-210
[8]   A dynamic ensemble learning algorithm for neural networks [J].
Alam, Kazi Md Rokibul ;
Siddique, Nazmul ;
Adeli, Hojjat .
NEURAL COMPUTING & APPLICATIONS, 2020, 32 (12) :8675-8690
[9]   A New dispersion entropy and fuzzy logic system methodology for automated classification of dementia stages using electroencephalograms [J].
Amezquita-Sanchez, Juan P. ;
Mammone, Nadia ;
Morabito, Francesco C. ;
Adeli, Hojjat .
CLINICAL NEUROLOGY AND NEUROSURGERY, 2021, 201
[10]  
[Anonymous], PASS DATASET