Autoencoder-based anomaly detection of industrial robot arm using stethoscope based internal sound sensor

被引:38
|
作者
Yun, Huitaek [1 ,2 ]
Kim, Hanjun [1 ]
Jeong, Young Hun [3 ]
Jun, Martin B. G. [1 ,2 ]
机构
[1] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47906 USA
[2] Purdue Univ, Indiana Mfg Competitiveness Ctr MaC, W Lafayette, IN 47906 USA
[3] Kyungpook Natl Univ, Sch Mech Engn, Daegu 41566, South Korea
关键词
Sound spectrogram; Autoencoder; Neural network; Stethoscope; Industrial robot arm; FAULT-DIAGNOSIS; WAVELET TRANSFORM; VIBRATION; SYSTEM; CLASSIFICATION; IDENTIFICATION;
D O I
10.1007/s10845-021-01862-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sound and vibration analysis are prominent tools for machine health diagnosis. Especially, neural network (NN) strategies have focused on finding complex and nonlinear relationships between the sensor signal and the machine status to detect machine faults. However, it is difficult to collect enough amount of fault data as much as normal status data for training general NN models. To resolve the issue, this paper proposes the autoencoder-based anomaly detection framework for industrial robot arms using an internal sound sensor. The autoencoder uses signals in the normal state of the robots for training the model. It reconstructs the input signals as output, and anomalous states are found from high reconstruction error. Two stethoscopes were attached to the surface of the robot joint as sensors, and the sounds were recorded by USB microphone attached to the outlet of the stethoscopes. Features were extracted from STFT spectrogram images of the gathered sound, then used to train and test an autoencoder model. The reconstruction errors of the autoencoder were compared to distinguish the abnormal status from normal one. The experimental results suggest that the stethoscopes prevent the interference of noise, and the collected sound signals can be utilized for detecting machine anomalies.
引用
收藏
页码:1427 / 1444
页数:18
相关论文
共 50 条
  • [1] Autoencoder-based anomaly detection of industrial robot arm using stethoscope based internal sound sensor
    Huitaek Yun
    Hanjun Kim
    Young Hun Jeong
    Martin B. G. Jun
    Journal of Intelligent Manufacturing, 2023, 34 : 1427 - 1444
  • [2] APAD: Autoencoder-based Payload Anomaly Detection for industrial IoE
    Kim, SungJin
    Jo, WooYeon
    Shon, Taeshik
    APPLIED SOFT COMPUTING, 2020, 88
  • [3] Autoencoder-based Network Anomaly Detection
    Chen, Zhaomin
    Yeo, Chai Kiat
    Lee, Bu Sung
    Lau, Chiew Tong
    2018 WIRELESS TELECOMMUNICATIONS SYMPOSIUM (WTS), 2018,
  • [4] An improved autoencoder-based approach for anomaly detection in industrial control systems
    Aslam, Muhammad Muzamil
    Tufail, Ali
    De Silva, Liyanage Chandratilak
    Haji Mohd Apong, Rosyzie Anna Awg
    Namoun, Abdallah
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2024, 12 (01)
  • [5] AUTOENCODER-BASED ANOMALY DETECTION IN INDUSTRIAL X-RAY IMAGES
    Lindgren, Erik
    Zach, Christopher
    PROCEEDINGS OF 2021 48TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION (QNDE2021), 2021,
  • [6] Autoencoder-based anomaly detection for surface defect inspection
    Tsai, Du-Ming
    Jen, Po-Hao
    ADVANCED ENGINEERING INFORMATICS, 2021, 48
  • [7] Autoencoder-based Anomaly Detection in Smart Farming Ecosystem
    Adkisson, Mary
    Kimmell, Jeffrey C.
    Gupta, Maanak
    Abdelsalam, Mahmoud
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 3390 - 3399
  • [8] Autoencoder-based detector for distinguishing process anomaly and sensor failure
    Lee, Chia-Yen
    Chang, Kai
    Ho, Chien
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2024, 62 (19) : 7130 - 7145
  • [9] Anomaly Detection for Sensor Signals Utilizing Deep Learning Autoencoder-Based Neural Networks
    Esmaeili, Fatemeh
    Cassie, Erica
    Nguyen, Hong Phan T.
    Plank, Natalie O. V.
    Unsworth, Charles P. P.
    Wang, Alan
    BIOENGINEERING-BASEL, 2023, 10 (04):
  • [10] Classifying Depression in Imbalanced Datasets using an Autoencoder-Based Anomaly Detection Approach
    Gerych, Walter
    Agu, Emmanuel
    Rundensteiner, Elke
    2019 13TH IEEE INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC), 2019, : 124 - 127