Milne-Type inequalities via expanded fractional operators: A comparative study with different types of functions

被引:0
|
作者
Hyder, Abd-Allah [1 ]
Budak, Huseyin [2 ]
Barakat, Mohamed A. [3 ,4 ]
机构
[1] King Khalid Univ, Coll Sci, Dept Math, POB 9004, Abha 61413, Saudi Arabia
[2] Duzce Univ, Fac Sci & Arts, Dept Math, Duzce, Turkiye
[3] Univ Tabuk, Coll Al Wajh, Dept Comp Sci, Tabuk, Saudi Arabia
[4] Al Azhar Univ, Fac Sci, Dept Math, Assiut 71524, Egypt
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 05期
关键词
fractional integrals; Milne-type inequalities; functions of bounded variation; convex functions; bounded functions; SIMPSONS TYPE;
D O I
10.3934/math.2024551
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study focused on deriving Milne-type inequalities using expanded fractional integral operators. We began by establishing a key equality associated with these operators. Using this equality, we explored Milne-type inequalities for functions with convex derivatives, supported by an illustrative example for clarity. Additionally, we investigated Milne-type inequalities for bounded and Lipschitzian functions utilizing fractional expanded integrals. Finally, we extended our exploration to Milne-type inequalities involving functions of bounded variation.
引用
收藏
页码:11228 / 11246
页数:19
相关论文
共 50 条
  • [41] New Estimates on Hermite-Hadamard Type Inequalities via Generalized Tempered Fractional Integrals for Convex Functions with Applications
    Kashuri, Artion
    Almalki, Yahya
    Mahnashi, Ali M.
    Sahoo, Soubhagya Kumar
    FRACTAL AND FRACTIONAL, 2023, 7 (08)
  • [42] Some new parameterized Newton-type inequalities for differentiable functions via fractional integrals
    Muhammad Aamir Ali
    Christopher S. Goodrich
    Hüseyin Budak
    Journal of Inequalities and Applications, 2023
  • [43] IMPROVED HERMITE-HADAMARD TYPE INEQUALITIES FOR CONVEX FUNCTIONS VIA KATUGAMPOLA FRACTIONAL INTEGRALS
    Sanli, Zeynep
    Kunt, Mehmet
    Koroglu, Tuncay
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2019, 37 (02): : 461 - 474
  • [44] New refinements of Chebyshev-Polya-Szego-type inequalities via generalized fractional integral operators
    Butt, Saad Ihsan
    Akdemir, Ahmet Ocak
    Bhatti, Muhammad Yousaf
    Nadeem, Muhammad
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [45] Ostrowski-type inequalities pertaining to Atangana-Baleanu fractional operators and applications containing special functions
    Sahoo, Soubhagya Kumar
    Kodamasingh, Bibhakar
    Kashuri, Artion
    Aydi, Hassen
    Ameer, Eskandar
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [46] Hermite-Hadamard Type Inequalities for Twice Differantiable Functions via Generalized Fractional Integrals
    Budak, Huseyin
    Ertugral, Fatma
    Pehlivan, Ebru
    FILOMAT, 2019, 33 (15) : 4967 - 4979
  • [47] Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for p-convex functions via new fractional conformable integral operators
    Mehreen, Naila
    Anwar, Matloob
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2019, 19 (04): : 230 - 240
  • [48] Generalized k-Fractional Chebyshev-Type Inequalities via Mittag-Leffler Functions
    Zhang, Zhiqiang
    Farid, Ghulam
    Mehmood, Sajid
    Jung, Chahn-Yong
    Yan, Tao
    AXIOMS, 2022, 11 (02)
  • [49] New Inequalities of Bullen-type for Twice-Differentiable Functions via Conformable Fractional Integrals
    Fatih Hezenci
    Hüseyin Budak
    International Journal of Applied and Computational Mathematics, 2024, 10 (6)
  • [50] New Hermite-Hadamard-Fejer type inequalities for (η1, η2)-convex functions via fractional calculus
    Mehmood, Sikander
    Zafar, Fiza
    Yasmin, Nusrat
    SCIENCEASIA, 2020, 46 (01): : 102 - 108