Milne-Type inequalities via expanded fractional operators: A comparative study with different types of functions

被引:0
|
作者
Hyder, Abd-Allah [1 ]
Budak, Huseyin [2 ]
Barakat, Mohamed A. [3 ,4 ]
机构
[1] King Khalid Univ, Coll Sci, Dept Math, POB 9004, Abha 61413, Saudi Arabia
[2] Duzce Univ, Fac Sci & Arts, Dept Math, Duzce, Turkiye
[3] Univ Tabuk, Coll Al Wajh, Dept Comp Sci, Tabuk, Saudi Arabia
[4] Al Azhar Univ, Fac Sci, Dept Math, Assiut 71524, Egypt
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 05期
关键词
fractional integrals; Milne-type inequalities; functions of bounded variation; convex functions; bounded functions; SIMPSONS TYPE;
D O I
10.3934/math.2024551
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study focused on deriving Milne-type inequalities using expanded fractional integral operators. We began by establishing a key equality associated with these operators. Using this equality, we explored Milne-type inequalities for functions with convex derivatives, supported by an illustrative example for clarity. Additionally, we investigated Milne-type inequalities for bounded and Lipschitzian functions utilizing fractional expanded integrals. Finally, we extended our exploration to Milne-type inequalities involving functions of bounded variation.
引用
收藏
页码:11228 / 11246
页数:19
相关论文
共 50 条
  • [31] New integral inequalities for synchronous functions via Atangana-Baleanu fractional integral operators
    Set, Erhan
    Akdemir, Ahmet Ocak
    Karaoglan, Ali
    CHAOS SOLITONS & FRACTALS, 2024, 186
  • [32] Hermite-Hadamard-Fejer Type Inequalities for p-Convex Functions via Fractional Integrals
    Kunt, Mehmet
    Iscan, Imdat
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A4): : 2079 - 2089
  • [33] Some New Inequalities of Simpson's Type for s-convex Functions via Fractional Integrals
    Chen, Jianhua
    Huang, Xianjiu
    FILOMAT, 2017, 31 (15) : 4989 - 4997
  • [34] Hermite–Hadamard–Fejér Type Inequalities for p-Convex Functions via Fractional Integrals
    Mehmet Kunt
    İmdat İşcan
    Iranian Journal of Science and Technology, Transactions A: Science, 2018, 42 : 2079 - 2089
  • [35] Some New Simpson's-Formula-Type Inequalities for Twice-Differentiable Convex Functions via Generalized Fractional Operators
    Ali, Muhammad Aamir
    Kara, Hasan
    Tariboon, Jessada
    Asawasamrit, Suphawat
    Budak, Huseyin
    Hezenci, Fatih
    SYMMETRY-BASEL, 2021, 13 (12):
  • [36] Further on Inequalities for (α,h-m)-Convex Functions via k-Fractional Integral Operators
    Yan, Tao
    Farid, Ghulam
    Demirel, Ayse Kuebra
    Nonlaopon, Kamsing
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [37] New Simpson type inequalities for twice differentiable functions via generalized fractional integrals
    You, Xuexiao
    Hezenci, Fatih
    Budak, Huseyin
    Kara, Hasan
    AIMS MATHEMATICS, 2022, 7 (03): : 3959 - 3971
  • [38] Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals
    Iscan, Imdat
    Wu, Shanhe
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 238 : 237 - 244
  • [39] Ostrowski-type inequalities pertaining to Atangana–Baleanu fractional operators and applications containing special functions
    Soubhagya Kumar Sahoo
    Bibhakar Kodamasingh
    Artion Kashuri
    Hassen Aydi
    Eskandar Ameer
    Journal of Inequalities and Applications, 2022
  • [40] On some Newton's type inequalities for differentiable convex functions via Riemann-Liouville fractional integrals
    Ali, Muhammad Aamir
    Budak, Huseyin
    Feckan, Michal
    Patanarapeelert, Nichaphat
    Sitthiwirattham, Thanin
    FILOMAT, 2023, 37 (11) : 3427 - 3441