Research on discourse role recognition in task-oriented collaborative dialogue

被引:0
作者
Shan, Liqian [2 ]
Zhao, Hui [1 ]
Feng, Yuhui [2 ]
机构
[1] Xinjiang Univ, Coll Comp Sci & Technol, Sch Cyber Sci & Engn, Urumqi 830017, Peoples R China
[2] Xinjiang Univ, Coll Informat Sci & Engn, Urumqi, Peoples R China
基金
中国国家自然科学基金;
关键词
Task-oriented collaborative dialogue; discourse role; dataset; speaker turn; topic-aware;
D O I
10.3233/JIFS-235263
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Task-oriented collaborative dialogues have become an indispensable form of communication in our daily work and learning, in which participants exchange ideas and share information to advance goals. It is crucial to automatically analyze participants' contributions and understand these dialogues relative to individuals with limited attention spans. In this paper, seven Discourse Role (DR) labels are designed to describe discourse's different roles in collaborative dialogues for goal achievement. We collected about 11K discourses from a publicly available dialogue corpus and annotated them with DR tags to construct a dataset named MRDR (Meeting Recorder Discourse Role). In addition, this paper proposes a novel hierarchical model, STTAHM (Speaker Turn and Topic-Aware Hierarchical Model), for Discourse Role classification. The model is equipped to perceive speaker turn and dialogue topic and can effectively capture the discourse's local and global semantic information. Experimental results show that our proposed method is effective on the constructed dataset, and the accuracy of Discourse Role classification reaches 86.99%.
引用
收藏
页码:5709 / 5721
页数:13
相关论文
empty
未找到相关数据