Energy decay rate of the wave-wave transmission system with Kelvin-Voigt damping

被引:0
|
作者
Zhang, Hua-Lei [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing, Peoples R China
[2] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
关键词
energy decay rate; Kelvin-Voigt damping; transmission; EXPONENTIAL STABILITY; ELASTIC-SYSTEMS; STABILIZATION; EQUATIONS;
D O I
10.1002/mma.10041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the energy decay rate of the wave-wave transmission system with Kelvin-Voigt damping on a rectangular domain. The damping is imposed on one of wave equations. By the separation of variables method and the frequency domain method, we show that the optimal energy decay rate of the system is t-2/3$$ {t} circumflex {-2/3} $$, which is independent of wave speeds.
引用
收藏
页码:8721 / 8747
页数:27
相关论文
共 50 条
  • [41] Logarithmic stabilization of the Kirchhoff plate transmission system with locally distributed Kelvin-Voigt damping
    Gimyong Hong
    Hakho Hong
    Applications of Mathematics, 2022, 67 : 21 - 47
  • [42] Stability Results for a Laminated Beam with Kelvin-Voigt Damping
    Ramos, A. J. A.
    Freitas, M. M.
    Cabanillas, V. R.
    Dos Santos, M. J.
    Raposo, C. A.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (05)
  • [43] Stability for the Timoshenko Beam System with Local Kelvin-Voigt Damping
    Hong Liang ZHAO
    Chun Guo ZHANG
    Acta Mathematica Sinica(English Series), 2005, 21 (03) : 655 - 666
  • [44] A Transmission Problem for Euler-Bernoulli beam with Kelvin-Voigt Damping
    Raposo, C. A.
    Bastos, W. D.
    Avila, J. A. J.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2011, 5 (01): : 17 - 28
  • [45] Stabilization of the wave equations with localized Kelvin-Voigt type damping under optimal geometric conditions
    Nasser, Rayan
    Noun, Nahla
    Wehbe, Ali
    COMPTES RENDUS MATHEMATIQUE, 2019, 357 (03) : 272 - 277
  • [46] Stability for the Timoshenko beam system with local Kelvin-Voigt damping
    Zhao, HL
    Liu, KS
    Zhang, CG
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2005, 21 (03) : 655 - 666
  • [47] Optimal stability results for laminated beams with Kelvin-Voigt damping and delay
    Cabanillas Zannini, Victor
    Potenciano-Machado, Leyter
    Quispe Mendez, Teofanes
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 514 (02)
  • [48] TRANSMISSION PROBLEMS IN (THERMO)VISCOELASTICITY WITH KELVIN-VOIGT DAMPING: NONEXPONENTIAL, STRONG, AND POLYNOMIAL STABILITY
    Munoz Rivera, Jaime E.
    Racke, Reinhard
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (05) : 3741 - 3765
  • [49] Decay properties and asymptotic profiles for elastic waves with Kelvin-Voigt damping in 2D
    Chen, Wenhui
    ASYMPTOTIC ANALYSIS, 2020, 117 (1-2) : 113 - 140
  • [50] Stabilization of a coupled wave equation with one localized nonregular fractional Kelvin-Voigt damping with nonsmooth coefficients
    Zhang, Li
    Liu, Wenjun
    An, Yanning
    Cao, Xinxin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (08) : 9119 - 9146