Vanishing viscosity limit to the planar rarefaction wave with vacuum for 3-D full compressible Navier-Stokes equations with temperature-dependent transport coefficients
被引:4
|
作者:
Hou, Meichen
论文数: 0引用数: 0
h-index: 0
机构:
Northwest Univ, Ctr Nonlinear Studies, Sch Math, Xian 710069, Peoples R ChinaNorthwest Univ, Ctr Nonlinear Studies, Sch Math, Xian 710069, Peoples R China
Hou, Meichen
[1
]
Liu, Lingjun
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Technol, Sch Math Stat & Mech, Beijing 100124, Peoples R ChinaNorthwest Univ, Ctr Nonlinear Studies, Sch Math, Xian 710069, Peoples R China
Liu, Lingjun
[2
]
Wang, Shu
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Technol, Sch Math Stat & Mech, Beijing 100124, Peoples R ChinaNorthwest Univ, Ctr Nonlinear Studies, Sch Math, Xian 710069, Peoples R China
Wang, Shu
[2
]
Xu, Lingda
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Peoples R ChinaNorthwest Univ, Ctr Nonlinear Studies, Sch Math, Xian 710069, Peoples R China
Xu, Lingda
[3
]
机构:
[1] Northwest Univ, Ctr Nonlinear Studies, Sch Math, Xian 710069, Peoples R China
[2] Beijing Univ Technol, Sch Math Stat & Mech, Beijing 100124, Peoples R China
[3] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Peoples R China
In this paper, we construct a family of global-in-time solutions of the 3-D full compressible Navier-Stokes (N-S) equations with temperature-dependent transport coefficients (including viscosity and heat-conductivity), and show that at arbitrary times and arbitrary strength this family of solutions converges to planar rarefaction waves connected to the vacuum as the viscosity vanishes in the sense of L infinity(R3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>\infty ({\mathbb {R}}<^>3)$$\end{document}. We consider the Cauchy problem in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}<^>3$$\end{document} with perturbations of the infinite global norm, particularly, periodic perturbations. To deal with the infinite oscillation, we construct a suitable ansatz carrying this periodic oscillation such that the difference between the solution and the ansatz belongs to some Sobolev space and thus the energy method is feasible. The novelty of this paper is that the viscosity and heat-conductivity are temperature-dependent and degeneracies caused by vacuum. Thus the a priori assumptions and two Gagliardo-Nirenberg type inequalities are essentially used. Next, more careful energy estimates are carried out in this paper, by studying the zero and non-zero modes of the solutions, we obtain not only the convergence rate concerning the viscosity and heat conductivity coefficients but also the exponential time decay rate for the non-zero mode.
机构:
Shenzhen Univ, Coll Math & Stat, Shenzhen 518060, Peoples R ChinaShenzhen Univ, Coll Math & Stat, Shenzhen 518060, Peoples R China
Li, Xing
Li, Lin-An
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Appl Math, AMSS, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R ChinaShenzhen Univ, Coll Math & Stat, Shenzhen 518060, Peoples R China
机构:
Shanghai Inst Technol, Sch Sci, Shanghai 200235, Peoples R ChinaShanghai Inst Technol, Sch Sci, Shanghai 200235, Peoples R China
Geng, Yongcai
Li, Yachun
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Sch Math Sci, MOE LSC, Shanghai 200240, Peoples R China
Shanghai Jiao Tong Univ, SHL MAC, Shanghai 200240, Peoples R ChinaShanghai Inst Technol, Sch Sci, Shanghai 200235, Peoples R China
Li, Yachun
Zhu, Shengguo
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
Chinese Univ Hong Kong, Inst Math Sci, Shatin, Hong Kong, Peoples R China
Univ Oxford, Math Inst, Oxford OX2 6GG, EnglandShanghai Inst Technol, Sch Sci, Shanghai 200235, Peoples R China
机构:
Minzu Univ China, Coll Sci, Beijing 100081, Peoples R ChinaMinzu Univ China, Coll Sci, Beijing 100081, Peoples R China
Li, Mingjie
Wang, Teng
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, AMSS, Inst Appl Math, Beijing 100190, Peoples R ChinaMinzu Univ China, Coll Sci, Beijing 100081, Peoples R China
Wang, Teng
Wang, Yi
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, AMSS, Inst Appl Math, Beijing 100190, Peoples R China
Beijing Ctr Math & Informat Sci, Beijing 100048, Peoples R ChinaMinzu Univ China, Coll Sci, Beijing 100081, Peoples R China
机构:
Chinese Acad Sci, AMSS, Inst Appl Math, Beijing 100190, Peoples R China
Chinese Acad Sci, Hua Loo Keng Key Lab Math, Beijing 100190, Peoples R ChinaChinese Acad Sci, AMSS, Inst Appl Math, Beijing 100190, Peoples R China
Huang, Feimin
Li, Mingjie
论文数: 0引用数: 0
h-index: 0
机构:
Minzu Univ China, Coll Sci, Beijing 100081, Peoples R ChinaChinese Acad Sci, AMSS, Inst Appl Math, Beijing 100190, Peoples R China
Li, Mingjie
Wang, Yi
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, AMSS, Inst Appl Math, Beijing 100190, Peoples R China
Chinese Acad Sci, Hua Loo Keng Key Lab Math, Beijing 100190, Peoples R ChinaChinese Acad Sci, AMSS, Inst Appl Math, Beijing 100190, Peoples R China