Application of carbon materials in catalytic systems for the hydrogenation-dehydrogenation of liquid organic hydrogen carriers

被引:1
|
作者
Kalenchuk, A. N. [1 ,2 ]
Bogdan, V. I. [1 ,2 ]
Dunaev, S. F. [1 ]
Kustov, L. M. [1 ,2 ]
机构
[1] Moscow MV Lomonosov State Univ, Dept Chem, 1-3 Leninskie Gory, Moscow 119991, Russia
[2] Russian Acad Sci, ND Zelinsky Inst Organ Chem, Leninsky Prosp 47, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
carbon catalyst carriers; hydrogenation; dehydrogenation; hydrogen storage; POLYCYCLIC AROMATIC-HYDROCARBONS; METHANE DECOMPOSITION; ACTIVATED CARBON; GRAPHENE OXIDE; BICYCLOHEXYL DEHYDROGENATION; PD NANOPARTICLES; HYDROTHERMAL SYNTHESIS; SURFACE-CHEMISTRY; STORAGE-SYSTEMS; PT/C CATALYST;
D O I
10.1007/s11172-024-4118-9
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Carbon materials with different textural characteristics (active carbon, carbon nanotubes, and Sibunite) for the purposes of hydrogen generation and storage and its evolution in processes using liquid organic hydrogen carriers are compared. A combination of structural and physicochemical characteristics (surface functionalization, controlled metal-carbon interaction, and relative chemical inertness) provides advantages of the modern carbon materials over oxides as catalyst carriers, since they allow the accumulation (hydrogenation) and evolution (dehydrogenation) of hydrogen to occur without cracking product formation. The prospects of the Sibunite-based Pt catalysts in these reactions are shown.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [41] Hydrogen storage using liquid organic carriers: Equilibrium simulation and dehydrogenation reactor design
    Heublein, Norbert
    Stelzner, Malte
    Sattelmayer, Thomas
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (46) : 24902 - 24916
  • [42] Hydrogen storage using liquid organic carriers: Equilibrium simulation and dehydrogenation reactor design
    Heublein, Norbert
    Stelzner, Malte
    Sattelmayer, Thomas
    Heublein, Norbert (heublein@td.mw.tum.de), 1600, Elsevier Ltd (45): : 24902 - 24916
  • [43] Heterogeneous Catalysis on Liquid Organic Hydrogen Carriers
    Dong, Zhun
    Mukhtar, Ahmad
    Lin, Hongfei
    TOPICS IN CATALYSIS, 2021, 64 (7-8) : 481 - 508
  • [44] Hydrogenation of liquid organic hydrogen carrier systems using multicomponent gas mixtures
    Jorschick, H.
    Vogl, M.
    Preuster, P.
    Boesmann, A.
    Wasserscheid, P.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (59) : 31172 - 31182
  • [45] The effects of alumina morphology and Pt electron property on reversible hydrogenation and dehydrogenation of dibenzyltoluene as a liquid organic hydrogen carrier
    Shi, Libin
    Zhou, Yiming
    Tan, Xiao
    Qi, Suitao
    Smith, Kevin J.
    Yi, Chunhai
    Yang, Bolun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (07) : 4704 - 4715
  • [46] Development of Liquid Organic Hydrogen Carriers for Hydrogen Storage and Transport
    Le, Thi-Hoa
    Tran, Ngo
    Lee, Hyun-Jong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (02)
  • [47] Catalytic hydrogenation reaction micro-kinetic model for dibenzyltoluene as liquid organic hydrogen carrier
    Tomic, Aleksandra
    Pomeroy, Brett
    Todic, Branislav
    Likozar, Blaz
    Nikacevic, Nikola
    APPLIED ENERGY, 2024, 365
  • [48] Insights into carbon-based materials for catalytic dehydrogenation of low-carbon alkanes and ethylbenzene
    Xing, Sijia
    Zhai, Sixiang
    Chen, Lei
    Yang, Huabin
    Yuan, Zhong-Yong
    FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING, 2023, 17 (11) : 1623 - 1648
  • [49] Hydrocarbon hydrogen carriers for catalytic transfer hydrogenation of guaiacol
    Fraga, Gabriel
    Yin, Yuling
    Konarova, Muxina
    Hasan, M. D.
    Laycock, Bronwyn
    Yuan, Qinghong
    Batalha, Nuno
    Pratt, Steven
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (51) : 27381 - 27391
  • [50] A parametric study of dehydrogenation of various Liquid Organic Hydrogen Carrier (LOHC) materials and its application to methanation process
    Naseem, Mujahid
    Usman, Muhammad
    Lee, Sangyong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (05) : 4100 - 4115