Non-smooth atomic decomposition of Triebel-Lizorkin-type spaces

被引:0
作者
Sawano, Yoshihiro [1 ]
Yang, Dachun [2 ]
Yuan, Wen [2 ]
机构
[1] Chuo Univ, Dept Math, Tokyo 1128551, Japan
[2] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ China, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Triebel-Lizorkin-type space; BMO; Atomic decomposition; Local oscillation decomposition; MORREY SPACES; VARIABLE EXPONENTS;
D O I
10.1007/s43037-023-00321-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, the authors establish a non-smooth atomic decomposition of Triebel-Lizorkin-type spaces and, as a by-product, a non-smooth atomic decomposition of subspaces of BMO spaces is obtained. An application of this decomposition method to the boundedness of Marcinkiewicz integral operators is also presented.
引用
收藏
页数:33
相关论文
共 28 条
[1]  
Asami K., 2018, COMMENT MATH HELV, V58, P37
[2]  
Asami K., 2017, Int. J. Appl. Math, V30, P547, DOI DOI 10.12732/IJAM.V30I6.7
[3]   SOME MAXIMAL INEQUALITIES [J].
FEFFERMAN, C ;
STEIN, EM .
AMERICAN JOURNAL OF MATHEMATICS, 1971, 93 (01) :107-+
[4]   A DISCRETE TRANSFORM AND DECOMPOSITIONS OF DISTRIBUTION SPACES [J].
FRAZIER, M ;
JAWERTH, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 93 (01) :34-170
[5]   Non-smooth atomic decomposition of variable 2-microlocal Besov-type and Triebel-Lizorkin-type spaces [J].
Goncalves, Helena F. .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2021, 15 (03)
[6]   Characterization of Triebel-Lizorkin type spaces with variable exponents via maximal functions, local means and non-smooth atomic decompositions [J].
Goncalves, Helena F. ;
Moura, Susana D. .
MATHEMATISCHE NACHRICHTEN, 2018, 291 (13) :2024-2044
[7]  
Grafakos L, 2014, GRAD TEXTS MATH, V250, DOI 10.1007/978-1-4939-1230-8
[8]  
Grafakos Loukas, 2014, Graduate Texts in Mathematics, V249, DOI DOI 10.1007/978-1-4939-1194-3
[9]   Morrey smoothness spaces: A new approach [J].
Haroske, Dorothee D. ;
Triebel, Hans .
SCIENCE CHINA-MATHEMATICS, 2023, 66 (06) :1301-1358
[10]   Smoothness Morrey Spaces of regular distributions, and some unboundedness property [J].
Haroske, Dorothee D. ;
Moura, Susana D. ;
Skrzypczak, Leszek .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 139 :218-244