Spread in climate policy scenarios unravelled

被引:27
作者
Dekker, Mark M. [1 ,2 ]
Hof, Andries F. [1 ,2 ,3 ]
van den Berg, Maarten [1 ]
Daioglou, Vassilis [1 ,2 ]
van Heerden, Rik [1 ]
van der Wijst, Kaj-Ivar [2 ]
van Vuuren, Detlef P. [1 ,2 ]
机构
[1] PBL Netherlands Environm Assessment Agcy, The Hague, Netherlands
[2] Univ Utrecht, Copernicus Inst Sustainable Dev, Utrecht, Netherlands
[3] Natl Inst Publ Hlth & Environm, Bilthoven, Netherlands
基金
欧盟地平线“2020”;
关键词
MITIGATION SCENARIOS; INDICATORS; GROWTH;
D O I
10.1038/s41586-023-06738-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Analysis of climate policy scenarios has become an important tool for identifying mitigation strategies, as shown in the latest Intergovernmental Panel on Climate Change Working Group III report1. The key outcomes of these scenarios differ substantially not only because of model and climate target differences but also because of different assumptions on behavioural, technological and socio-economic developments2-4. A comprehensive attribution of the spread in climate policy scenarios helps policymakers, stakeholders and scientists to cope with large uncertainties in this field. Here we attribute this spread to the underlying drivers using Sobol decomposition5, yielding the importance of each driver for scenario outcomes. As expected, the climate target explains most of the spread in greenhouse gas emissions, total and sectoral fossil fuel use, total renewable energy and total carbon capture and storage in electricity generation. Unexpectedly, model differences drive variation of most other scenario outcomes, for example, in individual renewable and carbon capture and storage technologies, and energy in demand sectors, reflecting intrinsic uncertainties about long-term developments and the range of possible mitigation strategies. Only a few scenario outcomes, such as hydrogen use, are driven by other scenario assumptions, reflecting the need for more scenario differentiation. This attribution analysis distinguishes areas of consensus as well as strong model dependency, providing a crucial step in correctly interpreting scenario results for robust decision-making. A Sobol attribution analysis unveils the roles of mitigation targets, model differences and scenario assumptions in shaping climate policy scenario outcomes.
引用
收藏
页码:309 / 316
页数:26
相关论文
共 52 条
[1]  
Anderson K, 2019, NATURE, V573, P348, DOI 10.1038/d41586-019-02744-9
[2]  
[Anonymous], 2021, World energy outlook 2021
[3]   Global energy sector emission reductions and bioenergy use: overview of the bioenergy demand phase of the EMF-33 model comparison [J].
Bauer, Nico ;
Rose, Steven K. ;
Fujimori, Shinichiro ;
van Vuuren, Detlef P. ;
Weyant, John ;
Wise, Marshall ;
Cui, Yiyun ;
Daioglou, Vassilis ;
Gidden, Matthew J. ;
Kato, Etsushi ;
Kitous, Alban ;
Leblanc, Florian ;
Sands, Ronald ;
Sano, Fuminori ;
Strefler, Jessica ;
Tsutsui, Junichi ;
Bibas, Ruben ;
Fricko, Oliver ;
Hasegawa, Tomoko ;
Klein, David ;
Kurosawa, Atsushi ;
Mima, Silvana ;
Muratori, Matteo .
CLIMATIC CHANGE, 2020, 163 (03) :1553-1568
[4]   The role of biomass in greenhouse gas mitigation [J].
Bilgen, S. ;
Keles, S. ;
Kaygusuz, K. .
ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2007, 29 (13) :1243-1252
[5]  
Byers Edward, 2022, Zenodo
[6]   National growth dynamics of wind and solar power compared to the growth required for global climate targets [J].
Cherp, Aleh ;
Vinichenko, Vadim ;
Tosun, Jale ;
Gordon, Joel A. ;
Jewell, Jessica .
NATURE ENERGY, 2021, 6 (07) :742-+
[7]   The underestimated potential of solar energy to mitigate climate change [J].
Creutzig, Felix ;
Agoston, Peter ;
Goldschmidt, Jan Christoph ;
Luderer, Gunnar ;
Nemet, Gregory ;
Pietzcker, Robert C. .
NATURE ENERGY, 2017, 2 (09)
[8]   Bioenergy technologies in long-run climate change mitigation: results from the EMF-33 study [J].
Daioglou, Vassilis ;
Rose, Steven K. ;
Bauer, Nico ;
Kitous, Alban ;
Muratori, Matteo ;
Sano, Fuminori ;
Fujimori, Shinichiro ;
Gidden, Matthew J. ;
Kato, Etsushi ;
Keramidas, Kimon ;
Klein, David ;
Leblanc, Florian ;
Tsutsui, Junichi ;
Wise, Marshal ;
van Vuuren, Detlef P. .
CLIMATIC CHANGE, 2020, 163 (03) :1603-1620
[9]   Robust climate change research: a review on multi-model analysis [J].
Duan, Hongbo ;
Zhang, Gupeng ;
Wang, Shouyang ;
Fan, Ying .
ENVIRONMENTAL RESEARCH LETTERS, 2019, 14 (03)
[10]   Modelling the drivers of a widespread shift to sustainable diets [J].
Eker, Sibel ;
Reese, Gerhard ;
Obersteiner, Michael .
NATURE SUSTAINABILITY, 2019, 2 (08) :725-735