Time Series Anomaly Detection with Reconstruction-Based State-Space Models

被引:1
|
作者
Wang, Fan [1 ]
Wang, Keli [2 ,3 ]
Yao, Boyu [1 ]
机构
[1] Novo Nordisk AS, Beijing, Peoples R China
[2] China Acad Railway Sci, Postgrad Dept, Beijing, Peoples R China
[3] China Railway Test & Certificat Ctr Ltd, Beijing, Peoples R China
来源
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT III | 2023年 / 14256卷
关键词
Time series; Neural networks; Anomaly detection; State-space models;
D O I
10.1007/978-3-031-44213-1_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent advances in digitization have led to the availability of multivariate time series data in various domains, enabling real-time monitoring of operations. Identifying abnormal data patterns and detecting potential failures in these scenarios are important yet rather challenging. In this work, we propose a novel anomaly detection method for time series data. The proposed framework jointly learns the observation model and the dynamic model, and model uncertainty is estimated from normal samples. Specifically, a long short-term memory (LSTM)-based encoder-decoder is adopted to represent the mapping between the observation space and the state space. Bidirectional transitions of states are simultaneously modeled by leveraging backward and forward temporal information. Regularization of the state space places constraints on the states of normal samples, and Mahalanobis distance is used to evaluate the abnormality level. Empirical studies on synthetic and real-world datasets demonstrate the superior performance of the proposedmethod in anomaly detection tasks.
引用
收藏
页码:74 / 86
页数:13
相关论文
共 50 条
  • [21] Time Series Anomaly Detection Based on GAN
    Sun, Yong
    Yu, Wenbo
    Chen, Yuting
    Kadam, Aishwarya
    2019 SIXTH INTERNATIONAL CONFERENCE ON SOCIAL NETWORKS ANALYSIS, MANAGEMENT AND SECURITY (SNAMS), 2019, : 375 - 382
  • [22] A guide to state-space modeling of ecological time series
    Auger-Methe, Marie
    Newman, Ken
    Cole, Diana
    Empacher, Fanny
    Gryba, Rowenna
    King, Aaron A.
    Leos-Barajas, Vianey
    Mills Flemming, Joanna
    Nielsen, Anders
    Petris, Giovanni
    Thomas, Len
    ECOLOGICAL MONOGRAPHS, 2021, 91 (04)
  • [23] On the Performance of Legendre State-Space Models in Short-Term Time Series Forecasting
    Zhang, Elise
    Wu, Di
    Boulet, Benoit
    2023 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, CCECE, 2023,
  • [24] Research on Anomaly Detection Model for Power Consumption Data Based on Time-Series Reconstruction
    Mao, Zhenghui
    Zhou, Bijun
    Huang, Jiaxuan
    Liu, Dandan
    Yang, Qiangqiang
    ENERGIES, 2024, 17 (19)
  • [25] Time Series Anomaly Detection using Diffusion-based Models
    Pintilie, Ioana
    Manolache, Andrei
    Brad, Florin
    2023 23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW 2023, 2023, : 570 - 578
  • [26] Anomaly Scoring for Prediction-Based Anomaly Detection in Time Series
    Li, Tianyu
    Comer, Mary L.
    Delp, Edward J.
    Desai, Sundip R.
    Mathieson, James L.
    Foster, Richard H.
    Chan, Moses W.
    2020 IEEE AEROSPACE CONFERENCE (AEROCONF 2020), 2020,
  • [27] NLP Based Anomaly Detection for Categorical Time Series
    Horak, Matthew
    Chandrasekaran, Sowmya
    Tobar, Giovanni
    2022 IEEE 23RD INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION FOR DATA SCIENCE (IRI 2022), 2022, : 27 - 34
  • [28] Anomaly detection in time series based on interval sets
    Ren, Huorong
    Liu, Mingming
    Liao, Xiujuan
    Liang, Li
    Ye, Zhixing
    Li, Zhiwu
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2018, 13 (05) : 757 - 762
  • [29] Anomaly Detection for Time Series Data Stream
    Wang, Qifan
    Yan, Bo
    Su, Hongyi
    Zheng, Hong
    2021 IEEE 6TH INTERNATIONAL CONFERENCE ON BIG DATA ANALYTICS (ICBDA 2021), 2021, : 118 - 122
  • [30] Unsupervised diffusion based anomaly detection for time series
    Zuo, Haiwei
    Zhu, Aiqun
    Zhu, Yanping
    Liao, Yinping
    Li, Shiman
    Chen, Yun
    APPLIED INTELLIGENCE, 2024, 54 (19) : 8968 - 8981