SKEW-CIRCULANT MATRIX AND CRITICAL POINTS OF POLYNOMIALS

被引:1
作者
Wei, Yunlan [1 ]
Zheng, Yanpeng [2 ]
Jiang, Zhaolin [1 ]
机构
[1] Linyi Univ, Sch Math & Stat, Linyi 276000, Peoples R China
[2] Linyi Univ, Sch Automat & Elect Engn, Linyi 276000, Peoples R China
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2023年 / 17卷 / 04期
基金
中国国家自然科学基金;
关键词
Critical point; eigenvalue; inequality; skew-circulant matrix;
D O I
10.7153/jmi-2023-17-93
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first prove a relation between the critical points of the skew-circulant matrix and the eigenvalues of its principal matrix. Furthermore, we reprove the inequality about the zeros of a polynomial and its critical points by using the properties of skew-circulant matrix, which is to show that we can not only find the skew-circulant matrix, but also give more structure matrices to prove this inequality.
引用
收藏
页码:1427 / 1431
页数:5
相关论文
共 8 条
[1]   Relationship between the zeros of two polynomials [J].
Cheung, W. S. ;
Ng, T. W. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (01) :107-115
[2]   On a Schoenberg-type conjecture [J].
de Bruin, MG ;
Sharma, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 105 (1-2) :221-228
[3]  
JOHNSON WB, 1979, J FUNCT ANAL, V32, P353, DOI 10.1016/0022-1236(79)90046-6
[4]   Circulants and critical points of polynomials [J].
Kushel, Olga ;
Tyaglov, Mikhail .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 439 (02) :634-650
[5]   Remarks on circulant matrices and critical points of polynomials [J].
Lin, Minghua ;
Xie, Mengyan ;
Zhang, Jiao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 502 (01)
[6]   Inverse spectral problem for normal matrices and the Gauss-Lucas theorem [J].
Malamud, SM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (10) :4043-4064