A Hybrid Chebyshev Pseudo-Spectral Finite-Difference Time-Domain Method for Numerical Simulation of 2D Acoustic Wave Propagation

被引:3
作者
Tong, Xiaozhong [1 ,2 ,3 ]
Sun, Ya [1 ,2 ,3 ]
机构
[1] Cent South Univ, Key Lab Metallogen Predict Nonferrous Met & Geol E, Minist Educt, Changsha 410083, Peoples R China
[2] Key Lab Nonferrous & Geol Hazard Detect, Changsha 410083, Peoples R China
[3] Cent South Univ, Sch Geosci & Info Phys, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
acoustic wave propagation; heterogenous medium; Chebyshev pseudo-spectral method; finite-difference time-domain method; hybrid technique; DISCONTINUOUS-GALERKIN; BOUNDARY-CONDITIONS; ELEMENT-METHOD; SCHEME; EFFICIENT; ALGORITHM; EQUATIONS;
D O I
10.3390/math12010117
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, a hybrid Chebyshev pseudo-spectral finite-difference time-domain (CPS-FDTD) algorithm is proposed for simulating 2D acoustic wave propagation in heterogeneous media, which is different from the other traditional numerical schemes such as finite element and finite difference. This proposed hybrid method integrates the efficiency of the FDTD approach in the time domain and the high accuracy of the CPS technique in the spatial domain. We present the calculation formulas of this novel approach and conduct simulation experiments to test it. The biconjugate gradient is solved by combining the large symmetric sparse systems stabilized algorithm with an incomplete LU factorization. Three numerical experiments are further presented to illustrate the accuracy, efficiency, and flexibility of the hybrid CPS-FDTD algorithm.
引用
收藏
页数:14
相关论文
共 33 条
  • [1] A wave finite element approach for modelling wave transmission through laminated plate junctions
    Aimakov, Nurkanat
    Tanner, Gregor
    Chronopoulos, Dimitrios
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [2] The errors in calculating the pseudospectral differentiation matrices for Cebysev-Gauss-Lobatto points
    Baltensperger, R
    Berrut, JP
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1999, 37 (01) : 41 - 48
  • [3] CLAYTON R, 1977, B SEISMOL SOC AM, V67, P1529
  • [4] Compact finite difference modeling of 2-D acoustic wave propagation
    Cordova, L. J.
    Rojas, O.
    Otero, B.
    Castillo, J.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 295 : 83 - 91
  • [5] A 2D frequency domain finite element formulation for solving the wave equation in the presence of rotating obstacles
    de Reboul, Silouane
    Perrey-Debain, Emmanuel
    Zerbib, Nicolas
    Moreau, Stephane
    [J]. WAVE MOTION, 2023, 121
  • [6] Discrete orthogonal polynomials on Gauss-Lobatto Chebyshev nodes
    Eisinberg, A.
    Fedele, G.
    [J]. JOURNAL OF APPROXIMATION THEORY, 2007, 144 (02) : 238 - 246
  • [7] THE PSEUDOSPECTRAL METHOD - COMPARISONS WITH FINITE-DIFFERENCES FOR THE ELASTIC WAVE-EQUATION
    FORNBERG, B
    [J]. GEOPHYSICS, 1987, 52 (04) : 483 - 501
  • [8] A high-order multiscale finite-element method fortime-domain acoustic-wave modeling
    Gao, Kai
    Fu, Shubin
    Chung, Eric T.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 360 : 120 - 136
  • [9] Comparison of artificial absorbing boundaries for acoustic wave equation modelling
    Gao, Yingjie
    Song, Hanjie
    Zhang, Jinhai
    Yao, Zhenxing
    [J]. EXPLORATION GEOPHYSICS, 2017, 48 (01) : 76 - 93
  • [10] Non-conforming hybrid meshes for efficient 2-D wave propagation using the Discontinuous Galerkin Method
    Hermann, Verena
    Kaeser, Martin
    Castro, Cristobal E.
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2011, 184 (02) : 746 - 758