Optics Determines the Electrochemiluminescence Signal of Bead-Based Immunoassays

被引:11
作者
Han, Dongni [1 ,2 ]
Jiang, Dechen [3 ,4 ]
Valenti, Giovanni [5 ]
Paolucci, Francesco [5 ,8 ]
Kanoufi, Frederic [6 ]
Chaumet, Patrick C. [7 ]
Fang, Danjun [2 ]
Sojic, Neso [1 ]
机构
[1] Univ Bordeaux, Bordeaux INP, ISM, UMR 5255,CNRS,ENSCBP, F-33607 Pessac, France
[2] Nanjing Med Univ, Sch Pharm, Nanjing 211126, Jiangsu, Peoples R China
[3] Nanjing Univ, State Key Lab Analyt Chem Life Sci, Nanjing 210023, Jiangsu, Peoples R China
[4] Nanjing Univ, Sch Chem & Chem Engn, Nanjing 210023, Jiangsu, Peoples R China
[5] Univ Bologna, Dept Chem G Ciamician, Via Selmi 2, I-40126 Bologna, Italy
[6] ITODYS, CNRS, Univ Paris Cite, F-75013 Paris, France
[7] Aix Marseille Univ, CNRS, Cent Marseille, Inst Fresnel, F-13013 Marseille, France
[8] CNR, ICMATE, Inst Condensed Matter Chem & Technol Energy, Corso Stati Uniti 4, I-35127 Padua, Italy
基金
中国国家自然科学基金;
关键词
electrochemiluminescence; optics; mechanisticand optical modeling; imaging; bead-based assays; DISCRETE-DIPOLE APPROXIMATION; SINGLE-MOLECULE; RESOLUTION; SPECTROSCOPY; LIGHT; MODEL;
D O I
10.1021/acssensors.3c01878
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemiluminescence (ECL) is an optical readout technique that is successfully applied for the detection of biomarkers in body fluids using microbead-based immunoassays. This technology is of utmost importance for in vitro diagnostics and thus a very active research area but is mainly focused on the quest for new dyes and coreactants, whereas the investigation of the ECL optics is extremely scarce. Herein, we report the 3D imaging of the ECL signals recorded at single microbeads decorated with the ECL labels in the sandwich immunoassay format. We show that the optical effects due to the light propagation through the bead determine mainly the spatial distribution of the recorded ECL signals. Indeed, the optical simulations based on the discrete dipole approximation compute rigorously the electromagnetic scattering of the ECL emission by the microbead and allow for reconstructing the spatial map of ECL emission. Thus, it provides a global description of the ECL chemical reactivity and the associated optics. The outcomes of this 3D imaging approach complemented by the optical modeling provide insight into the ECL optics and the unique ECL chemical mechanism operating on bead-based immunoassays. Therefore, it opens new directions for mechanistic investigations, ultrasensitive ECL bioassays, and imaging.
引用
收藏
页码:4782 / 4791
页数:10
相关论文
共 80 条
  • [41] Single Biomolecule Imaging by Electrochemiluminescence
    Liu, Yujie
    Zhang, Hongding
    Li, Binxiao
    Liu, Jianwei
    Jiang, Dechen
    Liu, Baohong
    Sojic, Neso
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (43) : 17910 - 17914
  • [42] Recent advances in electrochemiluminescence
    Liu, Zhongyuan
    Qi, Wenjing
    Xu, Guobao
    [J]. CHEMICAL SOCIETY REVIEWS, 2015, 44 (10) : 3117 - 3142
  • [43] Nanoconfinement-Enhanced Electrochemiluminescence for in Situ Imaging of Single Biomolecules
    Lu, Yanwei
    Huang, Xuedong
    Wang, Shurong
    Li, Binxiao
    Liu, Baohong
    [J]. ACS NANO, 2023, 17 (04) : 3809 - 3817
  • [44] Bio-Coreactant-Enhanced Electrochemiluminescence Microscopy of Intracellular Structure and Transport
    Ma, Cheng
    Wu, Shaojun
    Zhou, Yang
    Wei, Hui-Fang
    Zhang, Jianrong
    Chen, Zixuan
    Zhu, Jun-Jie
    Lin, Yuehe
    Zhu, Wenlei
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (09) : 4907 - 4914
  • [45] Recent Progress in Electrochemiluminescence Sensing and Imaging
    Ma, Cheng
    Cao, Yue
    Gou, Xiaodan
    Zhu, Jun-Jie
    [J]. ANALYTICAL CHEMISTRY, 2020, 92 (01) : 431 - 454
  • [46] Shadow Electrochemiluminescence Microscopy of Single Mitochondria
    Ma, Yumeng
    Colin, Camille
    Descamps, Julie
    Arbault, Stephane
    Sojic, Neso
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (34) : 18742 - 18749
  • [47] Subwavelength direct-write nanopatterning using optically trapped microspheres
    McLeod, Euan
    Arnold, Craig B.
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (07) : 413 - 417
  • [48] Electrogenerated chemiluminescence 69:: The tris(2,2′-bipyridine)ruthenium(II), (Ru(bpy)32+)/tri-n-propylamine (TPrA) system revisited -: A new route involving TPrA•+ cation radicals
    Miao, WJ
    Choi, JP
    Bard, AJ
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (48) : 14478 - 14485
  • [49] Optical Trapping and Manipulation of Superparamagnetic Beads Using Annular-Shaped Beams
    Oliveira, Leandro
    Campos, Warlley H.
    Rocha, Marcio S.
    [J]. METHODS AND PROTOCOLS, 2018, 1 (04) : 1 - 12
  • [50] FEM-based modeling of microsphere-enhanced interferometry
    Pahl, Tobias
    Hagemeier, Sebastian
    Lehmann, Peter
    [J]. LIGHT-ADVANCED MANUFACTURING, 2022, 3 (04):