A multi-reflection time-of-flight mass spectrometer for the offline ion source of the PUMA experiment

被引:2
作者
Schlaich, M. [1 ]
Fischer, J. [1 ]
Fischer, P. [2 ]
Klink, C. [1 ]
Obertelli, A. [1 ]
Schmidt, A. [1 ]
Schweikhard, L. [2 ]
Wienholtz, F. [1 ]
机构
[1] Tech Univ Darmstadt, Inst Kernphys, Schlossgartenstr 9, D-64289 Darmstadt, Germany
[2] Univ Greifswald, Inst Phys, Felix Hausdorff Str 6, D-17489 Greifswald, Germany
基金
欧洲研究理事会;
关键词
Time-of-flight mass spectrometry; Mass spectrometry; Ion beam purification; PUMA; TRAP; CAPTURE;
D O I
10.1016/j.ijms.2023.117166
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
The antiProton Unstable Matter Annihilation experiment (PUMA) at CERN aims at investigating the nucleon composition in the matter density tail of radioactive as well as stable isotopes by use of low-energy antiproton-nucleon annihilation processes. For this purpose, antiprotons provided by the Extra Low ENergy Antiproton (ELENA) facility will be trapped together with the ions of interest. While exotic ions will be obtained by the Isotope mass Separator On-Line DEvice (ISOLDE), stable ions will be delivered from an offline ion source setup designed for this purpose. This allows the proposed technique to be applied to a variety of stable nuclei and for reference measurements. For beam purification, the ion source setup includes a multi-reflection time-of-flight mass spectrometer (MR-ToF MS). Supported by SIMION (R) simulations, an earlier MR-ToF MS design has been modified to meet the requirements of PUMA. During commissioning of the new MR-ToF device with Ar+ ions, mass resolving powers in excess of 50,000 have been obtained after 150 revolutions, limited by the chopping of the continuous beam from an electron impact ionisation source.
引用
收藏
页数:9
相关论文
共 42 条
  • [1] Accurate Determination of the Neutron Skin Thickness of 208Pb through Parity-Violation in Electron Scattering
    Adhikari, D.
    Albataineh, H.
    Androic, D.
    Aniol, K.
    Armstrong, D. S.
    Averett, T.
    Gayoso, C. Ayerbe
    Barcus, S.
    Bellini, V
    Beminiwattha, R. S.
    Benesch, J. F.
    Bhatt, H.
    Pathak, D. Bhatta
    Bhetuwal, D.
    Blaikie, B.
    Campagna, Q.
    Camsonne, A.
    Cates, G. D.
    Chen, Y.
    Clarke, C.
    Cornejo, J. C.
    Dusa, S. Covrig
    Datta, P.
    Deshpande, A.
    Dutta, D.
    Feldman, C.
    Fuchey, E.
    Gal, C.
    Gaskell, D.
    Gautam, T.
    Gericke, M.
    Ghosh, C.
    Halilovic, I
    Hansen, J-O
    Hauenstein, F.
    Henry, W.
    Horowitz, C. J.
    Jantzi, C.
    Jian, S.
    Johnston, S.
    Jones, D. C.
    Karki, B.
    Katugampola, S.
    Keppel, C.
    King, P. M.
    King, D. E.
    Knauss, M.
    Kumar, K. S.
    Kutz, T.
    Lashley-Colthirst, N.
    [J]. PHYSICAL REVIEW LETTERS, 2021, 126 (17)
  • [2] Assmus W., 2005, Springer Handbook of Condensed Matter and Mate rials Data, DOI 10.1007/3-540-30437-1
  • [3] PUMA, antiProton unstable matter annihilation PUMA collaboration
    Aumann, T.
    Bartmann, W.
    Boine-Frankenheim, O.
    Bouvard, A.
    Broche, A.
    Butin, F.
    Calvet, D.
    Carbonell, J.
    Chiggiato, P.
    De Gersem, H.
    De Oliveira, R.
    Dobers, T.
    Ehm, F.
    Somoza, J. Ferreira
    Fischer, J.
    Fraser, M.
    Friedrich, E.
    Frotscher, A.
    Gomez-Ramos, M.
    Grenard, J-L
    Hobl, A.
    Hupin, G.
    Husson, A.
    Indelicato, P.
    Johnston, K.
    Klink, C.
    Kubota, Y.
    Lazauskas, R.
    Malbrunot-Ettenauer, S.
    Marsic, N.
    Mueller, W. F. O.
    Naimi, S.
    Nakatsuka, N.
    Necca, R.
    Neidherr, D.
    Neyens, G.
    Obertelli, A.
    Ono, Y.
    Pasinelli, S.
    Paul, N.
    Pollacco, E. C.
    Rossi, D.
    Scheit, H.
    Schlaich, M.
    Schmidt, A.
    Schweikhard, L.
    Seki, R.
    Sels, S.
    Siesling, E.
    Uesaka, T.
    [J]. EUROPEAN PHYSICAL JOURNAL A, 2022, 58 (05)
  • [4] The ISOLDE facility
    Catherall, R.
    Andreazza, W.
    Breitenfeldt, M.
    Dorsival, A.
    Focker, G. J.
    Gharsa, T. P.
    Giles, T. J.
    Grenard, J-L
    Locci, F.
    Martins, P.
    Marzari, S.
    Schipper, J.
    Shornikov, A.
    Stora, T.
    [J]. JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2017, 44 (09)
  • [5] SIMION for the personal computer in reflection
    Dahl, DA
    [J]. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY, 2000, 200 (1-3) : 3 - 25
  • [6] A high-performance multiple-reflection time-of-flight mass spectrometer and isobar separator for the research with exotic nuclei
    Dickel, T.
    Plass, W. R.
    Becker, A.
    Czok, U.
    Geissel, H.
    Haettner, E.
    Jesch, C.
    Kinsel, W.
    Petrick, M.
    Scheidenberger, C.
    Simon, A.
    Yavor, M. I.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2015, 777 : 172 - 188
  • [7] Multiple active voltage stabilizations for multi-reflection time-of-flight mass spectrometry
    Fischer, Paul
    Schweikhard, Lutz
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2021, 92 (06)
  • [8] Decay-rate power-law exponent as a link between dissociation energy and temperature
    Fischer, Paul
    Schweikhard, Lutz
    [J]. PHYSICAL REVIEW RESEARCH, 2020, 2 (04):
  • [9] Isotope-resolved photodissociation pathways of lead-doped bismuth clusters from tandem multi-reflection time-of-flight mass spectrometry
    Fischer, Paul
    Schweikhard, Lutz
    [J]. PHYSICAL REVIEW RESEARCH, 2019, 1 (03):
  • [10] In-depth study of in-trap high-resolution mass separation by transversal ion ejection from a multi-reflection time-of-flight device
    Fischer, Paul
    Knauer, Stefan
    Marx, Gerrit
    Schweikhard, Lutz
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2018, 89 (01)