Optimizing the use of a gas diffusion electrode setup for CO2 electrolysis imitating a zero-gap MEA design

被引:7
作者
Alinejad, Shima [1 ]
Quinson, Jonathan [2 ,3 ]
Li, Yao [4 ,5 ]
Kong, Ying [1 ]
Reichenberger, Sven [4 ,5 ]
Barcikowski, Stephan [4 ,5 ]
Broekmann, Peter [1 ]
Arenz, Matthias [1 ]
机构
[1] Univ Bern, Dept Chem Biochem & Pharmaceut Sci, Freiestr 3, CH-3012 Bern, Switzerland
[2] Univ Copenhagen, Dept Chem, Univ Pk 5, DK-2100 Copenhagen, Denmark
[3] Biochem & Chem Engn Dept, Abogade 40, DK-8200 Aarhus, Denmark
[4] Univ Duisburg Essen, Tech Chem 1, Univ Str 7, D-45141 Essen, Germany
[5] Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen CENIDE, Univ Str 7, D-45141 Essen, Germany
基金
瑞士国家科学基金会;
关键词
Gas diffusion electrode; CO; 2; reduction; Electrolysis; CATALYST LAYERS; REDUCTION; ELECTROREDUCTION; CELL; CONVERSION; EFFICIENT; REACTORS; SYNGAS;
D O I
10.1016/j.jcat.2023.115209
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The lack of a robust and standardized experimental test bed to investigate the performance of catalyst materials for the electrochemical CO2 reduction reaction (ECO2RR) is one of the major challenges in this field of research. To best reproduce and mimic commercially relevant conditions for catalyst screening and testing, gas diffusion electrode (GDE) setups attract rising attention as an alternative to conventional aqueous-based setups such as the H-cell configuration. Zero-gap electrolyzer designs show promising features for upscaling to the commercial scale. In this study, we scrutinize further our recently introduced "zero-gap GDE" setup or more correct half-cell MEA design for the CO2RR. Using an Au electrocatalyst as a model system we simulate the anode conditions in a zero-gap electrolyzer and identify/report the key experimental parameters to control the catalyst layer preparation to optimize the activity and selectivity of the catalyst. Among others, it is demonstrated that supported Au nanoparticles (NPs) result in significantly higher current densities when compared to unsupported counterparts, however, the supporting also renders the NPs prone to agglomeration during electrolysis.
引用
收藏
页数:12
相关论文
共 50 条
[41]   A Zero-Gap Gas Phase Photoelectrolyzer for CO2 Reduction with Porous Carbon Supported Photocathodes [J].
Zhao, Yujie ;
Merino-Garcia, Ivan ;
Albo, Jonathan ;
Kaiser, Andreas .
CHEMSUSCHEM, 2024, 17 (16)
[42]   Preventing Salt Formation in Zero-Gap CO2 Electrolyzers by Quantifying Cation Accumulation [J].
Biemolt, Jasper ;
Singh, Jai ;
Vergel, Gerard Prats ;
Pelzer, Henri M. ;
Burdyny, Thomas .
ACS ENERGY LETTERS, 2025, :807-814
[43]   Nonconductive Metal Oxide Gas Diffusion Layer for Mitigating Electrowetting during CO2 Electrolysis [J].
Haaring, Robert ;
Kang, Phil Woong ;
Lee, Jae Won ;
Lee, Junpyo ;
Lee, Hyunjoo .
ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (22) :28731-28741
[44]   Unveiling transport mechanisms of cesium and water in operando zero-gap CO2 electrolyzers [J].
Joensen, Bjort Oladottir ;
Zeledon, Jose A. Zamora ;
Trotochaud, Lena ;
Sartori, Andrea ;
Mirolo, Marta ;
Moss, Asger Barkholt ;
Garg, Sahil ;
Chorkendorff, Ib ;
Drnec, Jakub ;
Seger, Brian ;
Xu, Qiucheng .
JOULE, 2024, 8 (06) :1754-1771
[45]   Microenvironment Regulation Strategies Facilitating High-Efficiency CO2 Electrolysis in a Zero-Gap Bipolar Membrane Electrolyzer [J].
Yue, Pengtao ;
Fu, Qian ;
Li, Jun ;
Zhang, Liang ;
Ye, Dingding ;
Zhu, Xun ;
Liao, Qiang .
ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (46) :53429-53435
[46]   Analytical modelling of CO2 reduction in gas-diffusion electrode catalyst layers [J].
Blake, J. W. ;
Padding, J. T. ;
Haverkort, J. W. .
ELECTROCHIMICA ACTA, 2021, 393
[47]   Influence of flow and pressure distribution inside a gas diffusion electrode on the performance of a flow-by CO2 electrolyzer [J].
De Mot, Bert ;
Hereijgers, Jonas ;
Duarte, Miguel ;
Breugelmans, Tom .
CHEMICAL ENGINEERING JOURNAL, 2019, 378
[48]   Construction of 3D copper-chitosan-gas diffusion layer electrode for highly efficient CO2 electrolysis to C2+ alcohols [J].
Bi, Jiahui ;
Li, Pengsong ;
Liu, Jiyuan ;
Jia, Shuaiqiang ;
Wang, Yong ;
Zhu, Qinggong ;
Liu, Zhimin ;
Han, Buxing .
NATURE COMMUNICATIONS, 2023, 14 (01)
[49]   Strategies for the mitigation of salt precipitation in zero-gap CO2 electrolyzers producing CO [J].
Disch, Joey ;
Bohn, Luca ;
Metzler, Lukas ;
Vierrath, Severin .
JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (14) :7344-7357
[50]   From Flue Gas to Syngas: Composite Electrode Based on Ionic Liquid and Microporous Polymer for MEA-Based CO2 Electrolysis [J].
Rabiee, Hesamoddin ;
Dutta, Abhijit ;
Yan, Penghui ;
Ge, Lei ;
Dorosti, Fatereh ;
Yu, Xin ;
Rieder, Alain ;
Broekmann, Peter .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025,