Optimizing the use of a gas diffusion electrode setup for CO2 electrolysis imitating a zero-gap MEA design

被引:7
作者
Alinejad, Shima [1 ]
Quinson, Jonathan [2 ,3 ]
Li, Yao [4 ,5 ]
Kong, Ying [1 ]
Reichenberger, Sven [4 ,5 ]
Barcikowski, Stephan [4 ,5 ]
Broekmann, Peter [1 ]
Arenz, Matthias [1 ]
机构
[1] Univ Bern, Dept Chem Biochem & Pharmaceut Sci, Freiestr 3, CH-3012 Bern, Switzerland
[2] Univ Copenhagen, Dept Chem, Univ Pk 5, DK-2100 Copenhagen, Denmark
[3] Biochem & Chem Engn Dept, Abogade 40, DK-8200 Aarhus, Denmark
[4] Univ Duisburg Essen, Tech Chem 1, Univ Str 7, D-45141 Essen, Germany
[5] Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen CENIDE, Univ Str 7, D-45141 Essen, Germany
基金
瑞士国家科学基金会;
关键词
Gas diffusion electrode; CO; 2; reduction; Electrolysis; CATALYST LAYERS; REDUCTION; ELECTROREDUCTION; CELL; CONVERSION; EFFICIENT; REACTORS; SYNGAS;
D O I
10.1016/j.jcat.2023.115209
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The lack of a robust and standardized experimental test bed to investigate the performance of catalyst materials for the electrochemical CO2 reduction reaction (ECO2RR) is one of the major challenges in this field of research. To best reproduce and mimic commercially relevant conditions for catalyst screening and testing, gas diffusion electrode (GDE) setups attract rising attention as an alternative to conventional aqueous-based setups such as the H-cell configuration. Zero-gap electrolyzer designs show promising features for upscaling to the commercial scale. In this study, we scrutinize further our recently introduced "zero-gap GDE" setup or more correct half-cell MEA design for the CO2RR. Using an Au electrocatalyst as a model system we simulate the anode conditions in a zero-gap electrolyzer and identify/report the key experimental parameters to control the catalyst layer preparation to optimize the activity and selectivity of the catalyst. Among others, it is demonstrated that supported Au nanoparticles (NPs) result in significantly higher current densities when compared to unsupported counterparts, however, the supporting also renders the NPs prone to agglomeration during electrolysis.
引用
收藏
页数:12
相关论文
共 50 条
[31]   Gas-phase electrochemical CO2 reduction on silver-copper BTC MOF in a zero-gap membrane electrode assembly [J].
Nambi, Ashwin ;
Chatzitakis, Athanasios ;
Olsbye, Unni ;
Hjelm, Johan ;
Zhao, Yujie ;
Kaiser, Andreas .
ELECTROCHIMICA ACTA, 2024, 506
[32]   Systematic screening of gas diffusion layers for high performance CO2 electrolysis [J].
Samu, Angelika Anita ;
Szenti, Imre ;
Kukovecz, Akos ;
Endrodi, Balazs ;
Janaky, Csaba .
COMMUNICATIONS CHEMISTRY, 2023, 6 (01)
[33]   Efficient and durable porous Membrane-Based CO2 electrolysis for commercial Zero-Gap electrolyzer stack systems [J].
Ha, Min Gwan ;
Lim, Chulwan ;
Oh, Cheoulwoo ;
Kim, Hyunchul ;
Choi, Jae-Young ;
Lee, Woong Hee ;
Oh, Hyung-Suk .
CHEMICAL ENGINEERING JOURNAL, 2024, 496
[34]   Efficient Electroreduction of High-Pressure Gaseous and Supercritical CO2 to CO in a Zero-Gap Electrolyzer [J].
Tian, Xiongwei ;
Chen, Zheng ;
Iacoviello, Francesco ;
Xie, Mengyin ;
Chu, Wenqing ;
Zhuo, Yuqun .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2025, 13 (27) :10495-10503
[35]   Exploring the (Dis)-Similarities of Half-Cell and Full Cell Zero-Gap Electrolyzers for the CO2 Electroreduction [J].
Chanda, Vimanshu ;
Blaudszun, Dennis ;
Hoof, Lucas ;
Sanjuan, Ignacio ;
Pellumbi, Kevinjeorjios ;
Junge Puring, Kai ;
Andronescu, Corina ;
Apfel, Ulf-Peter .
CHEMELECTROCHEM, 2024, 11 (05)
[36]   Unlocking the Activity of Molecular Assemblies for CO2 Electroreduction in Zero-Gap Electrolysers via Catalyst Ink Engineering [J].
Pellumbi, Kevinjeorjios ;
Kraeenbring, Mena-Alexander ;
Krisch, Dominik ;
Wiesner, Wiebke ;
Sanden, Sebastian ;
Siegmund, Daniel ;
Oezcan, Fatih ;
Puring, Kai junge ;
Cao, Rui ;
Schoefberger, Wolfgang ;
Segets, Doris ;
Apfel, Ulf-Peter .
SMALL, 2025, 21 (08)
[37]   Enriching Surface-Accessible CO2 in the Zero-Gap Anion-Exchange-Membrane-Based CO2 Electrolyzer [J].
Xu, Qiucheng ;
Xu, Aoni ;
Garg, Sahil ;
Moss, Asger B. ;
Chorkendorff, Ib ;
Bligaard, Thomas ;
Seger, Brian .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (03)
[38]   Technological Advances in the Electroreduction of CO2 to HCOOH: The Impact of Catalyst, Gas Diffusion Electrode, and Cell Design [J].
Theussl, Verena ;
Sanz, Sergio ;
Foerster, Konstantin v. ;
Rutjens, Bastian ;
Weinrich, Henning ;
Tempel, Hermann ;
Eichel, Ruediger-A. .
ELECTROCHEMICAL SCIENCE ADVANCES, 2024,
[39]   Benchmarking ionomers for CO2 electroreduction to multicarbon products in zero-gap electrolysers [J].
Zeng, Fan ;
Deng, Huiying ;
Zhuansun, Mengjiao ;
Teng, Wenzhi ;
Wang, Yuhang .
JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (32) :20990-20998
[40]   CO2 electroreduction in acidic zero-gap electrolyzers: A modeling-based quantitative assessment of electrochemical and energy characteristics [J].
Wang, Yang ;
Wang, Hang ;
Kang, Zhongyin ;
Long, Zhisheng ;
Zhou, Guifeng ;
Fu, Qian ;
Zhu, Xun ;
Liao, Qiang .
CHEMICAL ENGINEERING JOURNAL, 2025, 520