Optimizing the use of a gas diffusion electrode setup for CO2 electrolysis imitating a zero-gap MEA design

被引:5
作者
Alinejad, Shima [1 ]
Quinson, Jonathan [2 ,3 ]
Li, Yao [4 ,5 ]
Kong, Ying [1 ]
Reichenberger, Sven [4 ,5 ]
Barcikowski, Stephan [4 ,5 ]
Broekmann, Peter [1 ]
Arenz, Matthias [1 ]
机构
[1] Univ Bern, Dept Chem Biochem & Pharmaceut Sci, Freiestr 3, CH-3012 Bern, Switzerland
[2] Univ Copenhagen, Dept Chem, Univ Pk 5, DK-2100 Copenhagen, Denmark
[3] Biochem & Chem Engn Dept, Abogade 40, DK-8200 Aarhus, Denmark
[4] Univ Duisburg Essen, Tech Chem 1, Univ Str 7, D-45141 Essen, Germany
[5] Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen CENIDE, Univ Str 7, D-45141 Essen, Germany
基金
瑞士国家科学基金会;
关键词
Gas diffusion electrode; CO; 2; reduction; Electrolysis; CATALYST LAYERS; REDUCTION; ELECTROREDUCTION; CELL; CONVERSION; EFFICIENT; REACTORS; SYNGAS;
D O I
10.1016/j.jcat.2023.115209
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The lack of a robust and standardized experimental test bed to investigate the performance of catalyst materials for the electrochemical CO2 reduction reaction (ECO2RR) is one of the major challenges in this field of research. To best reproduce and mimic commercially relevant conditions for catalyst screening and testing, gas diffusion electrode (GDE) setups attract rising attention as an alternative to conventional aqueous-based setups such as the H-cell configuration. Zero-gap electrolyzer designs show promising features for upscaling to the commercial scale. In this study, we scrutinize further our recently introduced "zero-gap GDE" setup or more correct half-cell MEA design for the CO2RR. Using an Au electrocatalyst as a model system we simulate the anode conditions in a zero-gap electrolyzer and identify/report the key experimental parameters to control the catalyst layer preparation to optimize the activity and selectivity of the catalyst. Among others, it is demonstrated that supported Au nanoparticles (NPs) result in significantly higher current densities when compared to unsupported counterparts, however, the supporting also renders the NPs prone to agglomeration during electrolysis.
引用
收藏
页数:12
相关论文
共 50 条
[21]   Size-Dependent Structural Alterations in Ag Nanoparticles during CO2 Electrolysis in a Gas-Fed Zero-Gap Electrolyzer [J].
Hu, Huifang ;
Liu, Menglong ;
Kong, Ying ;
Montiel, Ivan Zelocualtecatl ;
Hou, Yuhui ;
Rudnev, Alexander, V ;
Broekmann, Peter .
CHEMELECTROCHEM, 2022, 9 (17)
[22]   Geometric Catalyst Utilization in Zero-Gap CO2 Electrolyzers [J].
Subramanian, Siddhartha ;
Yang, Kailun ;
Li, Mengran ;
Sassenburg, Mark ;
Abdinejad, Maryam ;
Irtem, Erdem ;
Middelkoop, Joost ;
Burdyny, Thomas .
ACS ENERGY LETTERS, 2022, 8 (01) :222-229
[23]   High-resolution neutron imaging of salt precipitation and water transport in zero-gap CO2 electrolysis [J].
Disch, Joey ;
Bohn, Luca ;
Koch, Susanne ;
Schulz, Michael ;
Han, Yiyong ;
Tengattini, Alessandro ;
Helfen, Lukas ;
Breitwieser, Matthias ;
Vierrath, Severin .
NATURE COMMUNICATIONS, 2022, 13 (01) :6099
[24]   Local Reaction Environment Deviations within Gas Diffusion Electrode Pores for CO2 Electrolysis [J].
Butt, Esaar N. ;
Padding, Johan T. ;
Hartkamp, Remco .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (01)
[25]   Selective Zero-Gap CO2 Reduction in Acid [J].
Ha, Tae Hyeon ;
Kim, Jaehoon ;
Choi, Hyeonuk ;
Oh, Jihun .
ACS ENERGY LETTERS, 2024, 9 (10) :4835-4842
[26]   Highly selective and scalable CO2 to CO - Electrolysis using coral-nanostructured Ag catalysts in zero-gap configuration [J].
Lee, Woong Hee ;
Ko, Young-Jin ;
Choi, Yongjun ;
Lee, Si Young ;
Choi, Chang Hyuck ;
Hwang, Yun Jeong ;
Min, Byoung Koun ;
Strasser, Peter ;
Oh, Hyung-Suk .
NANO ENERGY, 2020, 76
[27]   Flow Field Design Matters for High Current Density Zero-Gap CO2 Electrolyzers [J].
Yuan, Shu ;
Wang, Rongyi ;
Xue, Rui ;
Wu, Lizhen ;
Zhang, Guiru ;
Li, Huiyuan ;
Wang, Qing ;
Yin, Jiewei ;
Luo, Liuxuan ;
Shen, Shuiyun ;
An, Liang ;
Yan, Xiaohui ;
Zhang, Junliang .
ACS ENERGY LETTERS, 2024, 9 (12) :5945-5954
[28]   Gas-phase electrochemical CO2 reduction on silver-copper BTC MOF in a zero-gap membrane electrode assembly [J].
Nambi, Ashwin ;
Chatzitakis, Athanasios ;
Olsbye, Unni ;
Hjelm, Johan ;
Zhao, Yujie ;
Kaiser, Andreas .
ELECTROCHIMICA ACTA, 2024, 506
[29]   Systematic screening of gas diffusion layers for high performance CO2 electrolysis [J].
Samu, Angelika Anita ;
Szenti, Imre ;
Kukovecz, Akos ;
Endrodi, Balazs ;
Janaky, Csaba .
COMMUNICATIONS CHEMISTRY, 2023, 6 (01)
[30]   Efficient and durable porous Membrane-Based CO2 electrolysis for commercial Zero-Gap electrolyzer stack systems [J].
Ha, Min Gwan ;
Lim, Chulwan ;
Oh, Cheoulwoo ;
Kim, Hyunchul ;
Choi, Jae-Young ;
Lee, Woong Hee ;
Oh, Hyung-Suk .
CHEMICAL ENGINEERING JOURNAL, 2024, 496