Optimizing the use of a gas diffusion electrode setup for CO2 electrolysis imitating a zero-gap MEA design

被引:3
|
作者
Alinejad, Shima [1 ]
Quinson, Jonathan [2 ,3 ]
Li, Yao [4 ,5 ]
Kong, Ying [1 ]
Reichenberger, Sven [4 ,5 ]
Barcikowski, Stephan [4 ,5 ]
Broekmann, Peter [1 ]
Arenz, Matthias [1 ]
机构
[1] Univ Bern, Dept Chem Biochem & Pharmaceut Sci, Freiestr 3, CH-3012 Bern, Switzerland
[2] Univ Copenhagen, Dept Chem, Univ Pk 5, DK-2100 Copenhagen, Denmark
[3] Biochem & Chem Engn Dept, Abogade 40, DK-8200 Aarhus, Denmark
[4] Univ Duisburg Essen, Tech Chem 1, Univ Str 7, D-45141 Essen, Germany
[5] Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen CENIDE, Univ Str 7, D-45141 Essen, Germany
基金
瑞士国家科学基金会;
关键词
Gas diffusion electrode; CO; 2; reduction; Electrolysis; CATALYST LAYERS; REDUCTION; ELECTROREDUCTION; CELL; CONVERSION; EFFICIENT; REACTORS; SYNGAS;
D O I
10.1016/j.jcat.2023.115209
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The lack of a robust and standardized experimental test bed to investigate the performance of catalyst materials for the electrochemical CO2 reduction reaction (ECO2RR) is one of the major challenges in this field of research. To best reproduce and mimic commercially relevant conditions for catalyst screening and testing, gas diffusion electrode (GDE) setups attract rising attention as an alternative to conventional aqueous-based setups such as the H-cell configuration. Zero-gap electrolyzer designs show promising features for upscaling to the commercial scale. In this study, we scrutinize further our recently introduced "zero-gap GDE" setup or more correct half-cell MEA design for the CO2RR. Using an Au electrocatalyst as a model system we simulate the anode conditions in a zero-gap electrolyzer and identify/report the key experimental parameters to control the catalyst layer preparation to optimize the activity and selectivity of the catalyst. Among others, it is demonstrated that supported Au nanoparticles (NPs) result in significantly higher current densities when compared to unsupported counterparts, however, the supporting also renders the NPs prone to agglomeration during electrolysis.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Modeling Planar Electrodes and Zero-Gap Membrane Electrode Assemblies for CO2 Electrolysis
    Ehlinger, Victoria M.
    Lee, Dong Un
    Lin, Tiras Y.
    Duoss, Eric B.
    Baker, Sarah E.
    Jaramillo, Thomas F.
    Hahn, Christopher
    CHEMELECTROCHEM, 2024, 11 (07)
  • [2] Gas Diffusion Electrode with Microporous Layers of Hydrophobicity Gradient Distribution for CO2 Electrolysis in a Zero-Gap Electrolyzer Operated with Pure Water
    Wan, Qiqi
    Yuan, Lei
    Jiang, Wenxing
    Liu, Yingying
    Zhang, Longhai
    Zhuang, Xiaodong
    Zhang, Junliang
    Ke, Changchun
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (48) : 17046 - 17052
  • [3] Insights into zero-gap CO2 electrolysis at elevated temperatures
    Rodriguez, Carlos A. Giron
    Kani, Nishithan C.
    Moss, Asger B.
    Joensen, Bjort Oladottir
    Garg, Sahil
    Deng, Wanyu
    Wilson, Terry
    Varcoe, John R.
    Chorkendorff, Ib
    Seger, Brian
    EES CATALYSIS, 2024, 2 (03): : 850 - 861
  • [4] Carbonate Ion Crossover in Zero-Gap, KOH Anolyte CO2 Electrolysis
    Mardle, Peter
    Cassegrain, Simon
    Habibzadeh, Faezeh
    Shi, Zhiqing
    Holdcroft, Steven
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (46): : 25446 - 25454
  • [5] Electrochemical Reduction of CO2 on Au Electrocatalysts in a Zero-Gap, Half-Cell Gas Diffusion Electrode Setup: a Systematic Performance Evaluation and Comparison to an H-cell Setup
    Alinejad, Shima
    Quinson, Jonathan
    Wiberg, Gustav K. H.
    Schlegel, Nicolas
    Zhang, Damin
    Li, Yao
    Reichenberger, Sven
    Barcikowski, Stephan
    Arenz, Matthias
    CHEMELECTROCHEM, 2022, 9 (12)
  • [6] Reference Electrode Types for Zero-Gap CO2 Electrolyzers: Benefits and Limitations
    Bohn, Luca
    Kieninger, Jochen
    Rupitsch, Stefan J.
    Klose, Carolin
    Vierrath, Severin
    Disch, Joey
    ADVANCED SCIENCE, 2024, 11 (32)
  • [7] Microenvironments of Cu catalysts in zero-gap membrane electrode assembly for efficient CO2 electrolysis to C2+ products
    Choi, Woong
    Choi, Yongjun
    Choi, Eunsuh
    Yun, Hyewon
    Jung, Wonsang
    Lee, Woong Hee
    Oh, Hyung-Suk
    Won, Da Hye
    Na, Jonggeol
    Hwang, Yun Jeong
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (19) : 10363 - 10372
  • [8] Highly selective and stackable electrode design for gaseous CO2 electroreduction to ethylene in a zero-gap configuration
    Lee, Woong Hee
    Lim, Chulwan
    Lee, Si Young
    Chae, Keun Hwa
    Choi, Chang Hyuck
    Lee, Ung
    Min, Byoung Koun
    Hwang, Yun Jeong
    Oh, Hyung-Suk
    NANO ENERGY, 2021, 84
  • [9] Concentrated formate produced through co-electrolysis of CO2 and methanol in a zero-gap electrolyzer
    Lin, Jianlong
    Chi, Haoyuan
    Liu, Hai
    Fan, Qun
    Yan, Tianxiang
    Kuang, Siyu
    Wang, Hui
    Li, Minglu
    Yan, Yabo
    Zhang, Tianying
    Zhang, Sheng
    Ma, Xinbin
    AICHE JOURNAL, 2024, 70 (05)
  • [10] Selective Zero-Gap CO2 Reduction in Acid
    Ha, Tae Hyeon
    Kim, Jaehoon
    Choi, Hyeonuk
    Oh, Jihun
    ACS ENERGY LETTERS, 2024, 9 (10): : 4835 - 4842