Novel data-driven subtypes and stages of brain atrophy in the ALS-FTD spectrum

被引:2
作者
Shen, Ting [1 ]
Vogel, Jacob W. [2 ]
Duda, Jeffrey [3 ]
Phillips, Jeffrey S. [1 ]
Cook, Philip A. [3 ]
Gee, James [3 ]
Elman, Lauren [4 ]
Quinn, Colin [4 ]
Amado, Defne A. [4 ]
Baer, Michael [4 ]
Massimo, Lauren [1 ]
Grossman, Murray [1 ]
Irwin, David J. [1 ,5 ]
Mcmillan, Corey T. [1 ]
机构
[1] Univ Penn, Perelman Sch Med, Dept Neurol, Penn Frontotemporal Degenerat Ctr, Philadelphia, PA 19104 USA
[2] Lund Univ, Dept Clin Sci, SciLifeLab, S-22242 Lund, Sweden
[3] Univ Penn, Dept Radiol, Penn Image Comp & Sci Lab PICSL, Sch Med, Philadelphia, PA 19104 USA
[4] Univ Penn, Perelman Sch Med, Dept Neurol, Philadelphia, PA 19104 USA
[5] Univ Penn, Perelman Sch Med, Dept Neurol, Digital Neuropathol Lab, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
Amyotrophic lateral sclerosis; Frontotemporal degeneration; Disease heterogeneity; SuStaIn model; AMYOTROPHIC-LATERAL-SCLEROSIS; FRONTOTEMPORAL LOBAR DEGENERATION; BEHAVIORAL VARIANT; DISEASE PROGRESSION; CORTICAL THICKNESS; REPEAT EXPANSION; DEMENTIA; C9ORF72; DIAGNOSIS; PATTERNS;
D O I
10.1186/s40035-023-00389-3
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
BackgroundTDP-43 proteinopathies represent a spectrum of neurological disorders, anchored clinically on either end by amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD). The ALS-FTD spectrum exhibits a diverse range of clinical presentations with overlapping phenotypes, highlighting its heterogeneity. This study was aimed to use disease progression modeling to identify novel data-driven spatial and temporal subtypes of brain atrophy and its progression in the ALS-FTD spectrum.MethodsWe used a data-driven procedure to identify 13 anatomic clusters of brain volume for 57 behavioral variant FTD (bvFTD; with either autopsy-confirmed TDP-43 or TDP-43 proteinopathy-associated genetic variants), 103 ALS, and 47 ALS-FTD patients with likely TDP-43. A Subtype and Stage Inference (SuStaIn) model was trained to identify subtypes of individuals along the ALS-FTD spectrum with distinct brain atrophy patterns, and we related subtypes and stages to clinical, genetic, and neuropathological features of disease.ResultsSuStaIn identified three novel subtypes: two disease subtypes with predominant brain atrophy in either prefrontal/somatomotor regions or limbic-related regions, and a normal-appearing group without obvious brain atrophy. The limbic-predominant subtype tended to present with more impaired cognition, higher frequencies of pathogenic variants in TBK1 and TARDBP genes, and a higher proportion of TDP-43 types B, E and C. In contrast, the prefrontal/somatomotor-predominant subtype had higher frequencies of pathogenic variants in C9orf72 and GRN genes and higher proportion of TDP-43 type A. The normal-appearing brain group showed higher frequency of ALS relative to ALS-FTD and bvFTD patients, higher cognitive capacity, higher proportion of lower motor neuron onset, milder motor symptoms, and lower frequencies of genetic pathogenic variants. The overall SuStaIn stages also correlated with evidence for clinical progression including longer disease duration, higher King's stage, and cognitive decline. Additionally, SuStaIn stages differed across clinical phenotypes, genotypes and types of TDP-43 pathology.ConclusionsOur findings suggest distinct neurodegenerative subtypes of disease along the ALS-FTD spectrum that can be identified in vivo, each with distinct brain atrophy, clinical, genetic and pathological patterns.
引用
收藏
页数:20
相关论文
共 50 条
[31]   The spectrum of cognitive disorders in Parkinson's disease: A data-driven approach [J].
Dujardin, Kathy ;
Leentjens, Albert F. G. ;
Langlois, Carole ;
Moonen, Anja J. H. ;
Duits, Annelien A. ;
Carette, Anne-Sophie ;
Duhamel, Alain .
MOVEMENT DISORDERS, 2013, 28 (02) :183-189
[32]   Data-driven subtype classification of patients with early-stage multiple system atrophy [J].
Yang, Hui-Jun ;
Kim, Han-Joon ;
Jung, Yu Jin ;
Yoo, Dallah ;
Choi, Ji-Hyun ;
Im, Jin Hee ;
Jeon, Beomseok .
PARKINSONISM & RELATED DISORDERS, 2022, 95 :92-97
[33]   Data-driven subtypes of mixed semantic-logopenic primary progressive aphasia: Linguistic features, biomarker profiles and brain metabolic patterns [J].
Mazzeo, Salvatore ;
Morinelli, Carmen ;
Polito, Cristina ;
Giacomucci, Giulia ;
Moschini, Valentina ;
Ingannato, Assunta ;
Balestrini, Juri ;
Frigerio, Daniele ;
Emiliani, Filippo ;
Galdo, Giulia ;
Crucitti, Chiara ;
Piazzesi, Diletta ;
Bagnoli, Silvia ;
Padiglioni, Sonia ;
Berti, Valentina ;
Sorbi, Sandro ;
Nacmias, Benedetta ;
Bessi, Valentina .
JOURNAL OF THE NEUROLOGICAL SCIENCES, 2024, 460
[34]   A totally data-driven whole-brain multimodal pipeline for the discrimination of Parkinson's disease, multiple system atrophy and healthy control [J].
Nemmi, F. ;
Pavy-Le Traon, A. ;
Phillips, O. R. ;
Galitzky, M. ;
Meissner, W. G. ;
Rascol, O. ;
Peran, P. .
NEUROIMAGE-CLINICAL, 2019, 23
[35]   A data-driven model of brain volume changes in progressive supranuclear palsy [J].
Scotton, W. J. ;
Bocchetta, M. ;
Todd, E. ;
Cash, D. M. ;
Oxtoby, N. ;
VandeVrede, L. ;
Heuer, H. ;
Alexander, D. C. ;
Rowe, J. B. ;
Morris, H. R. ;
Boxer, A. ;
Rohrer, J. D. ;
Wijeratne, P. A. .
BRAIN COMMUNICATIONS, 2022, 4 (03)
[36]   A graph theoretic approach to neurodegeneration: five data-driven neuropsychological subtypes in mild cognitive impairment [J].
Pommy, Jessica ;
Conant, L. ;
Butts, A. M. ;
Nencka, A. ;
Wang, Y. ;
Franczak, M. ;
Glass-Umfleet, L. .
AGING NEUROPSYCHOLOGY AND COGNITION, 2023, 30 (06) :903-922
[37]   A novel data-driven methodology for fault detection and dynamic risk assessment [J].
Amin, Md. Tanjin ;
Khan, Faisal ;
Ahmed, Salim ;
Imtiaz, Syed .
CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2020, 98 (11) :2397-2416
[38]   Identifying novel data-driven subgroups in congenital heart disease using multi-modal measures of brain structure [J].
Vandewouw, Marlee M. ;
Norris-Brilliant, Ami ;
Rahman, Anum ;
Assimopoulos, Stephania ;
Morton, Sarah U. ;
Kushki, Azadeh ;
Cunningham, Sean ;
King, Eileen ;
Goldmuntz, Elizabeth ;
Miller, Thomas A. ;
Thomas, Nina H. ;
Adams, Heather R. ;
Cleveland, John ;
Cnota, James F. ;
Grant, P. Ellen ;
Goldberg, Caren S. ;
Huang, Hao ;
Li, Jennifer S. ;
Mcquillen, Patrick ;
Porter, George A. ;
Roberts, Amy E. ;
Russell, Mark W. ;
Seidman, Christine E. ;
Tivarus, Madalina E. ;
Chung, Wendy K. ;
Hagler, Donald J. ;
Newburger, Jane W. ;
Panigrahy, Ashok ;
Lerch, Jason P. ;
Gelb, Bruce D. ;
Anagnostou, Evdokia .
NEUROIMAGE, 2024, 297
[39]   An unbiased data-driven age-related structural brain parcellation for the identification of intrinsic brain volume changes over the adult lifespan [J].
Bagarinao, Epifanio ;
Watanabe, Hirohisa ;
Maesawa, Satoshi ;
Mori, Daisuke ;
Hara, Kazuhiro ;
Kawabata, Kazuya ;
Yoneyama, Noritaka ;
Ohdake, Reiko ;
Imai, Kazunori ;
Masuda, Michihito ;
Yokoi, Takamasa ;
Ogura, Aya ;
Wakabayashi, Toshihiko ;
Kuzuya, Masafumi ;
Ozaki, Norio ;
Hoshiyama, Minoru ;
Isoda, Haruo ;
Naganawa, Shinji ;
Sobue, Gen .
NEUROIMAGE, 2018, 169 :134-144
[40]   Novel Alzheimer's disease subtypes identified using a data and knowledge driven strategy [J].
Mitelpunkt, Alexis ;
Galili, Tal ;
Kozlovski, Tal ;
Bregman, Noa ;
Shachar, Netta ;
Markus-Kalish, Mira ;
Benjamini, Yoav .
SCIENTIFIC REPORTS, 2020, 10 (01)