Novel data-driven subtypes and stages of brain atrophy in the ALS-FTD spectrum

被引:2
作者
Shen, Ting [1 ]
Vogel, Jacob W. [2 ]
Duda, Jeffrey [3 ]
Phillips, Jeffrey S. [1 ]
Cook, Philip A. [3 ]
Gee, James [3 ]
Elman, Lauren [4 ]
Quinn, Colin [4 ]
Amado, Defne A. [4 ]
Baer, Michael [4 ]
Massimo, Lauren [1 ]
Grossman, Murray [1 ]
Irwin, David J. [1 ,5 ]
Mcmillan, Corey T. [1 ]
机构
[1] Univ Penn, Perelman Sch Med, Dept Neurol, Penn Frontotemporal Degenerat Ctr, Philadelphia, PA 19104 USA
[2] Lund Univ, Dept Clin Sci, SciLifeLab, S-22242 Lund, Sweden
[3] Univ Penn, Dept Radiol, Penn Image Comp & Sci Lab PICSL, Sch Med, Philadelphia, PA 19104 USA
[4] Univ Penn, Perelman Sch Med, Dept Neurol, Philadelphia, PA 19104 USA
[5] Univ Penn, Perelman Sch Med, Dept Neurol, Digital Neuropathol Lab, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
Amyotrophic lateral sclerosis; Frontotemporal degeneration; Disease heterogeneity; SuStaIn model; AMYOTROPHIC-LATERAL-SCLEROSIS; FRONTOTEMPORAL LOBAR DEGENERATION; BEHAVIORAL VARIANT; DISEASE PROGRESSION; CORTICAL THICKNESS; REPEAT EXPANSION; DEMENTIA; C9ORF72; DIAGNOSIS; PATTERNS;
D O I
10.1186/s40035-023-00389-3
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
BackgroundTDP-43 proteinopathies represent a spectrum of neurological disorders, anchored clinically on either end by amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD). The ALS-FTD spectrum exhibits a diverse range of clinical presentations with overlapping phenotypes, highlighting its heterogeneity. This study was aimed to use disease progression modeling to identify novel data-driven spatial and temporal subtypes of brain atrophy and its progression in the ALS-FTD spectrum.MethodsWe used a data-driven procedure to identify 13 anatomic clusters of brain volume for 57 behavioral variant FTD (bvFTD; with either autopsy-confirmed TDP-43 or TDP-43 proteinopathy-associated genetic variants), 103 ALS, and 47 ALS-FTD patients with likely TDP-43. A Subtype and Stage Inference (SuStaIn) model was trained to identify subtypes of individuals along the ALS-FTD spectrum with distinct brain atrophy patterns, and we related subtypes and stages to clinical, genetic, and neuropathological features of disease.ResultsSuStaIn identified three novel subtypes: two disease subtypes with predominant brain atrophy in either prefrontal/somatomotor regions or limbic-related regions, and a normal-appearing group without obvious brain atrophy. The limbic-predominant subtype tended to present with more impaired cognition, higher frequencies of pathogenic variants in TBK1 and TARDBP genes, and a higher proportion of TDP-43 types B, E and C. In contrast, the prefrontal/somatomotor-predominant subtype had higher frequencies of pathogenic variants in C9orf72 and GRN genes and higher proportion of TDP-43 type A. The normal-appearing brain group showed higher frequency of ALS relative to ALS-FTD and bvFTD patients, higher cognitive capacity, higher proportion of lower motor neuron onset, milder motor symptoms, and lower frequencies of genetic pathogenic variants. The overall SuStaIn stages also correlated with evidence for clinical progression including longer disease duration, higher King's stage, and cognitive decline. Additionally, SuStaIn stages differed across clinical phenotypes, genotypes and types of TDP-43 pathology.ConclusionsOur findings suggest distinct neurodegenerative subtypes of disease along the ALS-FTD spectrum that can be identified in vivo, each with distinct brain atrophy, clinical, genetic and pathological patterns.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Factors That Influence Non-Motor Impairment Across the ALS-FTD Spectrum: Impact of Phenotype, Sex, Age, Onset and Disease Stage
    Devenney, Emma M.
    McErlean, Kate
    Tse, Nga Yan
    Caga, Jashelle
    Dharmadasa, Thanuja
    Huynh, William
    Mahoney, Colin J.
    Zoing, Margaret
    Mazumder, Srestha
    Dobson-Stone, Carol
    Kwok, John B.
    Halliday, Glenda M.
    Hodges, John R.
    Piguet, Olivier
    Ahmed, Rebekah M.
    Kiernan, Matthew C.
    FRONTIERS IN NEUROLOGY, 2021, 12
  • [22] Hypometabolic and hypermetabolic brain regions in patients with ALS-FTD show distinct patterns of grey and white matter degeneration: A pilot multimodal neuroimaging study
    Rajagopalan, Venkateswaran
    Pioro, Erik P.
    EUROPEAN JOURNAL OF RADIOLOGY, 2023, 158
  • [23] Definition and analysis of gray matter atrophy subtypes in mild cognitive impairment based on data-driven methods
    Zhang, Baiwen
    Xu, Meng
    Wu, Qing
    Ye, Sicheng
    Zhang, Ying
    Li, Zufei
    FRONTIERS IN AGING NEUROSCIENCE, 2024, 16
  • [24] A generalizable data-driven model of atrophy heterogeneity and progression in memory clinic settings
    Baumeister, Hannah
    Vogel, Jacob W.
    Insel, Philip S.
    Kleineidam, Luca
    Wolfsgruber, Steffen
    Stark, Melina
    Gellersen, Helena M.
    Yakupov, Renat
    Schmid, Matthias C.
    Luesebrink, Falk
    Brosseron, Frederic
    Ziegler, Gabriel
    Freiesleben, Silka D.
    Preis, Lukas
    Schneider, Luisa-Sophie
    Spruth, Eike J.
    Altenstein, Slawek
    Lohse, Andrea
    Fliessbach, Klaus
    Vogt, Ina R.
    Bartels, Claudia
    Schott, Bjoern H.
    Rostamzadeh, Ayda
    Glanz, Wenzel
    Incesoy, Enise I.
    Butryn, Michaela
    Janowitz, Daniel
    Rauchmann, Boris-Stephan
    Kilimann, Ingo
    Goerss, Doreen
    Munk, Matthias H.
    Hetzer, Stefan
    Dechent, Peter
    Ewers, Michael
    Scheffler, Klaus
    Wuestefeld, Anika
    Strandberg, Olof
    van Westen, Danielle
    Mattsson-Carlgren, Niklas
    Janelidze, Shorena
    Stomrud, Erik
    Palmqvist, Sebastian
    Spottke, Annika
    Laske, Christoph
    Teipel, Stefan
    Perneczky, Robert
    Buerger, Katharina
    Schneider, Anja
    Priller, Josef
    Peters, Oliver
    BRAIN, 2024, 147 (07) : 2400 - 2413
  • [25] Systematic review of data-driven cognitive subtypes in Parkinson disease
    Pourzinal, Dana
    Yang, Jihyun
    Lawson, Rachael A.
    McMahon, Katie L.
    Byrne, Gerard J.
    Dissanayaka, Nadeeka N.
    EUROPEAN JOURNAL OF NEUROLOGY, 2022, 29 (11) : 3395 - 3417
  • [26] Data-driven FDG-PET subtypes of Alzheimer's disease-related neurodegeneration
    Levin, Fedor
    Ferreira, Daniel
    Lange, Catharina
    Dyrba, Martin
    Westman, Eric
    Buchert, Ralph
    Teipel, Stefan J.
    Grothe, Michel J.
    ALZHEIMERS RESEARCH & THERAPY, 2021, 13 (01)
  • [27] Cryptic exon detection and transcriptomic changes revealed in single-nuclei RNA sequencing of C9ORF72 patients spanning the ALS-FTD spectrum
    Gittings, Lauren M.
    Alsop, Eric B.
    Antone, Jerry
    Singer, Mo
    Whitsett, Timothy G.
    Sattler, Rita
    Van Keuren-Jensen, Kendall
    ACTA NEUROPATHOLOGICA, 2023, 146 (03) : 433 - 450
  • [28] Data-driven classification of cognitively normal and mild cognitive impairment subtypes predicts progression in the NACC dataset
    Edmonds, Emily C.
    Thomas, Kelsey R.
    Rapcsak, Steven Z.
    Lindemer, Shannon L.
    Delano-Wood, Lisa
    Salmon, David P.
    Bondi, Mark W.
    ALZHEIMERS & DEMENTIA, 2024, 20 (05) : 3442 - 3454
  • [29] Longitudinal follow up of data-driven cognitive subtypes in Parkinson's disease
    Pourzinal, Dana
    Yang, Jihyun
    Sivakumaran, Kumareshan
    McMahon, Katie L.
    Mitchell, Leander
    O'Sullivan, John D.
    Byrne, Gerard J.
    Dissanayaka, Nadeeka N.
    BRAIN AND BEHAVIOR, 2023, 13 (10):
  • [30] MRI data-driven clustering reveals different subtypes of Dementia with Lewy bodies
    Inguanzo, Anna
    Poulakis, Konstantinos
    Mohanty, Rosaleena
    Schwarz, Christopher G.
    Przybelski, Scott A.
    Diaz-Galvan, Patricia
    Lowe, Val J.
    Boeve, Bradley F.
    Lemstra, Afina W.
    van de Beek, Marleen
    van der Flier, Wiesje
    Barkhof, Frederik
    Blanc, Frederic
    de Sousa, Paulo Loureiro
    Philippi, Nathalie
    Cretin, Benjamin
    Demuynck, Catherine
    Nedelska, Zuzana
    Hort, Jakub
    Segura, Barbara
    Junque, Carme
    Oppedal, Ketil
    Aarsland, Dag
    Westman, Eric
    Kantarci, Kejal
    Ferreira, Daniel
    NPJ PARKINSONS DISEASE, 2023, 9 (01)