Lipid nanoparticles outperform electroporation in mRNA-based CAR T cell engineering

被引:45
作者
Kitte, Reni [1 ]
Rabel, Martin [2 ]
Geczy, Reka [2 ]
Park, Stella [2 ]
Fricke, Stephan [1 ,3 ]
Koehl, Ulrike [1 ,3 ,4 ]
Tretbar, U. Sandy [1 ,3 ]
机构
[1] Fraunhofer Inst Cell Therapy & Immunol IZI, Perlickstr 1, D-04103 Leipzig, Germany
[2] Precis NanoSyst Inc, Cytiva, 50-655 W Kent Ave N, Vancouver, BC V6P 6T7, Canada
[3] Fraunhofer Cluster Excellence Immune Mediated Dis, D-04103 Leipzig, Germany
[4] Univ Leipzig, Inst Clin Immunol, Med Fac, Johannisallee 30, D-04103 Leipzig, Germany
关键词
4-1BB COSTIMULATION; DELIVERY; IMMUNOTHERAPY;
D O I
10.1016/j.omtm.2023.101139
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Engineered T cells expressing chimeric antigen receptors (CARs) have been proven as efficacious therapies against selected hema-tological malignancies. However, the approved CAR T cell ther-apeutics strictly rely on viral transduction, a time-and cost-inten-sive procedure with possible safety issues. Therefore, the direct transfer of in vitro transcribed CAR-mRNA into T cells is pur-sued as a promising strategy for CAR T cell engineering. Electro-poration (EP) is currently used as mRNA delivery method for the generation of CAR T cells in clinical trials but achieving only poor anti-tumor responses. Here, lipid nanoparticles (LNPs) were examined for ex vivo CAR-mRNA delivery and compared with EP. LNP-CAR T cells showed a significantly prolonged effi- cacy in vitro in comparison with EP-CAR T cells as a result of extended CAR-mRNA persistence and CAR expression, attrib-uted to a different delivery mechanism with less cytotoxicity and slower CAR T cell proliferation. Moreover, CAR expression and in vitro functionality of mRNA-LNP-derived CAR T cells were comparable to stably transduced CAR T cells but were less exhausted. These results show that LNPs outperform EP and un-derline the great potential of mRNA-LNP delivery for ex vivo CAR T cell modification as next-generation transient approach for clinical studies.
引用
收藏
页数:12
相关论文
共 48 条
[1]   Targeted Delivery of RNAi Therapeutics With Endogenous and Exogenous Ligand-Based Mechanisms [J].
Akinc, Akin ;
Querbes, William ;
De, Soma ;
Qin, June ;
Frank-Kamenetsky, Maria ;
Jayaprakash, K. Narayanannair ;
Jayaraman, Muthusamy ;
Rajeev, Kallanthottathil G. ;
Cantley, William L. ;
Dorkin, J. Robert ;
Butler, James S. ;
Qin, LiuLiang ;
Racie, Timothy ;
Sprague, Andrew ;
Fava, Eugenio ;
Zeigerer, Anja ;
Hope, Michael J. ;
Zerial, Marino ;
Sah, Dinah W. Y. ;
Fitzgerald, Kevin ;
Tracy, Mark A. ;
Manoharan, Muthiah ;
Koteliansky, Victor ;
de Fougerolles, Antonin ;
Maier, Martin A. .
MOLECULAR THERAPY, 2010, 18 (07) :1357-1364
[2]   N1-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice [J].
Andries, Oliwia ;
Mc Cafferty, Sean ;
De Smedt, Stefaan C. ;
Weiss, Ron ;
Sanders, Niek N. ;
Kitada, Tasuku .
JOURNAL OF CONTROLLED RELEASE, 2015, 217 :337-344
[3]   CAR T-cell Therapy: A New Era in Cancer Immunotherapy [J].
Androulla, Miliotou N. ;
Lefkothea, Papadopoulou C. .
CURRENT PHARMACEUTICAL BIOTECHNOLOGY, 2018, 19 (01) :5-18
[4]   Activity of Mesothelin-Specific Chimeric Antigen Receptor T Cells Against Pancreatic Carcinoma Metastases in a Phase 1 Trial [J].
Beatty, Gregory L. ;
O'Hara, Mark H. ;
Lacey, Simon F. ;
Torigian, Drew A. ;
Nazimuddin, Farzana ;
Chen, Fang ;
Kulikovskaya, Irina M. ;
Soulen, Michael C. ;
McGarvey, Maureen ;
Nelson, Anne Marie ;
Gladney, Whitney L. ;
Levine, Bruce L. ;
Melenhorst, J. Joseph ;
Plesa, Gabriela ;
June, Carl H. .
GASTROENTEROLOGY, 2018, 155 (01) :29-32
[5]   Mesothelin-Specific Chimeric Antigen Receptor mRNA-Engineered T Cells Induce Antitumor Activity in Solid Malignancies [J].
Beatty, Gregory L. ;
Haas, Andrew R. ;
Maus, Marcela V. ;
Torigian, Drew A. ;
Soulen, Michael C. ;
Plesa, Gabriela ;
Chew, Anne ;
Zhao, Yangbing ;
Levine, Bruce L. ;
Albelda, Steven M. ;
Kalos, Michael ;
June, Carl H. .
CANCER IMMUNOLOGY RESEARCH, 2014, 2 (02) :112-120
[6]   Orthogonal Design of Experiments for Optimization of Lipid Nanoparticles for mRNA Engineering of CAR T Cells [J].
Billingsley, Margaret M. ;
Hamilton, Alex G. ;
Mai, David ;
Patel, Savan K. ;
Swingle, Kelsey L. ;
Sheppard, Neil C. ;
June, Carl H. ;
Mitchell, Michael J. .
NANO LETTERS, 2022, 22 (01) :533-542
[7]   Ionizable Lipid Nanoparticle-Mediated mRNA Delivery for Human CAR T Cell Engineering [J].
Billingsley, Margaret M. ;
Singh, Nathan ;
Ravikumar, Pranali ;
Zhang, Rui ;
June, Carl H. ;
Mitchell, Michael J. .
NANO LETTERS, 2020, 20 (03) :1578-1589
[8]   Transfer of mRNA encoding recombinant immunoreceptors reprograms CD4+ and CD8+ T cells for use in the adoptive immunotherapy of cancer [J].
Birkholz, K. ;
Hombach, A. ;
Krug, C. ;
Reuter, S. ;
Kershaw, M. ;
Kaempgen, E. ;
Schuler, G. ;
Abken, H. ;
Schaft, N. ;
Doerrie, J. .
GENE THERAPY, 2009, 16 (05) :596-604
[9]   The Ins and Outs of Messenger RNA Electroporation for Physical Gene Delivery in Immune Cell-Based Therapy [J].
Campillo-Davo, Diana ;
De Laere, Maxime ;
Roex, Gils ;
Versteven, Maarten ;
Flumens, Donovan ;
Berneman, Zwi N. ;
Van Tendeloo, Viggo F. I. ;
Anguille, Sebastien ;
Lion, Eva .
PHARMACEUTICS, 2021, 13 (03)
[10]  
Cummins KD, 2017, BLOOD, V130